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1. Technical Progress During Period July 1, 1984 - June 30, 1985

During the year covered by this report, technical progress was made in a number
of directions in our project, "Distributed Knowledge Base Systems for Diagnosis and
Information Retrieval." Our recent emphasis on the general area of reasoning about
complex devices and systems has continued. The ubiquity of complex devices in
our technological life and the importance of keeping them operational is a sufficient
justification for studying how human experts reason about them and how such
reasoning can be incorporated in computer systems. From a purely scientific view-
point, these forms of expert reasoning provit.e a good experimental arena for

.* theories of knowledge representation and problem solving.

Our long-term goals are to understand the structure of knowledge and the reason-
ing processes needed for producing computer-based expert decision-making and con-
sultation systems. We would like our systems to have a measure of understanding
of the domain, different types of problem solving strategies, and have a conceptual
structure that matches that of humans in the same domain, so as to facilitate
knowledge acquisition and user interaction. Our near-term goals are to pursue this
aim in the specific task domains of diagnostic reasoning and automated design.

During the year under report, we especially concentrated on:

1. diagnostic reasoning about complex systems;

2. automation of expert design behavior of certain types;

3. giving diagnostic expert systems a measure of understanding of their

" 6. domain; and,

4. laying the conceptual foundations of an approach to expert system design
I, at a much higher level of abstraction than is currently common.

Basic research on diagnostic reasoning includes:

1. Control strategies and knowledge organization. Issues: which diagnostic
hypothesis to consider when? How should diagnostic knowledge be dis-
tributed among various hypotheses?

2. Causal models (we call them "functional models"). They describe how
devices actually work. Aim: to be able to automatically generate diag-
nostic hypotheses and diagnostic knowledge from these models.

3. Investigation of how to reason about the qualitative behavior of complex
systems, much like human experts do. Traditional approach of qualita-
tive simulation is useful where applicable, but when a large number of U
components involved it may result in combinatorial problems. Our ap-
proach: consolidation of behavioral abstractions of components into a
whole without the need for actual simulation. Goal: to be able to give
Al systems the ability to put together descriptions of how systems of
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Icomponents will behave, given behavioral descriptions of components
themselves.

tBasic research on design problem solving includes:

- understanding the different kinds of design knowledge and strategies used by
human experts.

-we have categorized design into 3 classes, in terms of complexity and types of
knowledge and problem solving. We have shown how to automate Class 3 design,
which corresponds to what one might call "routine" design by expert designers.

2. Project Progress Reports

Following the tradition of earlier years, we will present the specific progress during
the year by summarizing the contents of new papers that were prepared, submitted
or published during the year. The papers themselves will be attached as appen-

Idices to this report. A number of papers that had been submitted as appendices to
the previous annual reports were published during the year, but they will not be
included in this report.

1. Qualitative and Functional Reasoning about Physical Systems and Devices.
The "Consolidation" Technique for Reasoning about Behaviors of Sys-
tems of Components: Commonsense reasoning includes, among others,
an ability to efficiently derive qualitative accounts of systems of physical
components behave. Al research of the past few years has paid increas-
ing attention to this problem. A class of approaches called qualitative
simulation has been proposed for this class of problems. Essentially,
each component is described in terms of qualitative changes its impor-
tant variables undergo in response qualitative changes in some of its in-
put variables, and a calculus by which these changes can be propagated
through the components. The progress in our research has been in two
parts - one, in understanding the limitations of qualitative simulation,
which has so far been the main method that has been available for in-
ferring the behaviors of systems from the behaviors of the components;
and two, in understanding the prospects for an alternative method. In
Appendix A, "A Critique of Qualitative Simulation from a Consolidation
Viewpoint," we compare two main techniques for qualitative simulation
with the consolidation approach. In Appendix B, "Understanding Be-
havior Using Consolidation," we give details of the consolidation ap-
proach. Appendix C describes both our functional representation and

X the consolidation investigations in the context of diagnosis.

2. Diagnostic Reasoning. As we have indicated in earlier reports, we have
been developing a family of higher level languages for expert system
design, with partial support from this grant. The CSRL language is,
particularly useful for diagnostic system design, and we have reported on

A. r.



3

it widely in the literature. Appendix D, "Mapping Medical Knowledge
into Conceptual Structures," describes how a complex body of knowledge
may be analyzed properly so that it can be encoded adequately in this
language. The research for the paper was partially supported by the
AFOSR grant.

Also in the area of diagnostic reasoning, Prof. Chandrasekaran co-edited
a special issue of the SIGART Newsletter on "Structure and Function in
Diagnostic Reasoning." We include as Appendix E the editorial of this
special issue, which gives an architecture for diagnostic reasoning. This
paper organizes the research in this area into a framework that we think
may be useful in understanding the difference in motivations between
different research activities in the area.

3. Design Problem Solving. The year saw the completion of the Ph. D dis-
sertation of David C. Brown, "Expert Systems for Design Problem Solv-
ing Using Design Refinement with Plan Selection and Redesign." This
research was supported by the AFOSR grant. We have forwarded

ncopies of the dissertation to AFOSR earlier, and in the last year's an-
nual report had included an extensive summary of the research. Appen-
dix F, "Plan Selection in Design Problem-Solving," describes the specific
technical issues in how design plans are selected.

4. Theoretical foundations of knowledge-based reasoning. For a number of
years we have been arguing that much of the discussion in knowledge-
based reasoning has been at toc low a level of abstraction, and that

phenomena at the knowledge level exist and need to be explored. Essen-
S,,tially the idea is that the current emphasis on rules, frames or logical

languages is really an emphasis on implementation-level issues. A useful
level of abstraction is one which considers different types of knowledge
and different types control regimes for different kinds of generic tasks.

4The idea is that if we have a repertoire of such generic tasks with as-
sociated characterization of types of knowledge, then complex knowledge-
based reasoning tasks can often be decomposed into an interacting collec-
tion of modules, each of which performs one of the generic tasks. In
our research we have developed an open-ended repertoire of such tasks
and show how most of the expert systems extant can be viewed as com-
binations of the generic tasks that we have identified. As Appendix G
we enclose "Generic Tasks in Expert System Design and Their Role in
Explanation of Problem Solving," which describes these ideas.

4. One of the fundamental paradigmatic characteristics of Al is the fact
that it uses complex symbolic and qualitative structures for representation
and manipulation as opposed to numerical information. The task of
classification is one of the tasks for which Al expert systems have been
most successfully deployed: systems such as Mycin, MDX and Prospector

d can be viewed as performing some version of the classification task.

Now, for more than two decades there has been a field called pattern
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recognition, which has used statistical classification as a basic tool. We
have compared the numerical approaches of pattern recognition to the
symbolic approaches of AI to the same classification task in an attempt
to learn where and why symbolic and qualitative structures that so
characterize human thought emerge. Results of this investigation appear
as Appendix H, "From Numbers to Symbols to Knowledge Structures:
Pattern Recognition and Artificial Intelligence Perspectives on the Clas-
sification Task."

3. Publications Prepared During the Year on Research Supported by
the Grant

1. B. Chandrasekaran, co-editor of ACM SIGART News Special Issue on "Structure,
Behavior and Function in Diagnostic Reasoning," July 1985. Editorial, with Robert
Milne,with the above title. (Appendix E.)

Is 2. B. Chandrasekaran, Tom Bylander and V. Sembugamoorthy, Functional
Representation and Behavior Composition by Consolidation: Two Aspects of Reason-
ing about Devices, SIGART Newsletter, Special Issue on Structure, Behavior and
Function, No. 93, July 1985, pp. 21-24. (Appendix C.)

3. B. Chandrasekaran, Generic Tasks in Expert System Design and Their Role in
Explanation of Problem Solving, To appear in the Proceedings of the National
Academy of Sciences I Office of Naval Research Workshop on AI and Distributed
Problem Solving, May 16-17, 1985. (Appendix G.)

4. B. Chandrasekaran, From Numbers To Symbols To Knowledge Structures: Pattern
Recognition and Artificial Intelligence Perspectives on the Classification Task, Paper
presented at the Workshop on Pattern Recognition in Practice-II, June 19-21, 1985,
and to appear in the book Pattern Recognition in Practice-If. (Appendix H.)

5. Tom Bylander, A Critique of Qualitative Simulation From a Consolidation
"" Viewpoint, To appear in the Proceedings of the IEEE International Conference on

Systems, Man and Cybernetics, November 12-15, 1985. (Appendix A.)

6. B. Chandrasekaran and Tom Byander, Understanding Behavior Using
Consolidation, To appear in the Proceedings of the 9th International Conference on
Artificial Intelligence, Aug 18-24, 1985. (Appendix B.)

7. Tom Bylander and Jack W. Smith, Jr., M.D., Mapping Medical Knowledge Into
Conceptual Structures, To appear in the the Proceedings of The Expert Systems in
Government Symposium, October 24-25, 1985. (Appendix D.)

8. B. Chandrasekaran and David C. Brown, Plan Selection in Design
Problem-Solving, Appears in the Proceedings of The Society for Al and Simulation
of Behavior 1985 Conference, April, 1985. (Appendix C.)
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Appendix A

In fact these two trends come together rather well in

Special Section on a body of recent work that deals with reasoning about
devices, where the general concern is one of how the
behavior of a device is related to and arises from its

L,' Reasoning About Structure, structure. On one hand, the general motivation behind
Behavior and Function this class of work is to understand the multiplicity of

processes that are needed for a complete account of

B. Chandrasekarani and Rob Mine2 , Guest Editors diagnostic reasoning as a task (i. e. concern with architec-
ture of task-specific reasoning as opposed to concern
with implementation-level concerns at rule, frame or logic

f.:,Introduction language level). On the other hand, such an understanding
of the relation between structure, behavior and function of

last several years of work in the area of a device is precisely the causal model for the diagnostic
knowledge-based systems has resulted in a deeper under- task in that domain: it explains how the behavior (or
standing of the potentials of the current generation of malfunction) is caused by the structural properties of the
ideas, but more importantly, also about their limitations device. As we shall see later in some of the papers in-
and the need for research both in a broads' framework as cluded in the special issue, they are also deep models in

"vIll as in new directions. The following ideas seem to us the sense that they correspond in some cases to some
to be worthy of note in this connection. degree of understanding of the device, and can be used to

derive the more associational pieces of knowledge usedThere is increasing interest in the multipliciting systems
knowledge structures and problem solving tech-
niques that seem to underlie complex reasoning
tasks. When viewed at the implementation language Structure. Behavior and Function: Relation to Diagnostic
evel, systeins often seem to have relatively simple and Other Reasoning Tasks

and uniformly represented pieces of knowledge and
control structures, but viewed at the task level, they In order to get a better understanding of the different
often do fairly complex kinds of actions. E.g., MYCIN, processes and types of knowledge involved in diagnostic

.1 viewed as rule-based system, has knowledge en- reasoning, it will be useful to consider some typical diag-
coded within the simple rule formalism, and its con- nostic scenarios.
trol structure is again a simple backward chaining. Typically, a diagnostic problem starts with the obser-
But viewed as a diagnostic problem solving system, vation of some behavior which is recognized as deviation
it has a much more complex knowledge structure from the expected or desirable, i.e., a malfunction behavior
and problem solving regime, all of which happen to is observed. The problem solver at this stage needs to
be implemented in a rule-based formalism. There is generate some hypotheses about the cause of the mal-
considerable interest in trying to understand the function typically these are in terms of changes in the
tasks themselves. Thus there is interest [1-4] in the structure of the device from the specifications In areas
class of problems that can be called diagnostic such as medicine, at this stage a number of low-cost
problems or design problems, or classification broad spectrum testing (such as physical examination a
problems, battery of blood tests, etc) may be undertaken without

While rule-based languages are, logically, any specific hypotheses in mind. or the initial malfunction
may be used to invoke one or more specific malfunction" computation-universal, and thus can incorporate any hypotheses. Most often these hypotheses are invoked by

kind of knowledge, in practice, most of the systems using what one might call "precompiled" pieces of
have encoded what have been called associational knowledge that relate behavioral observations to one or
knowledge, i.e.. pieces of knowledge that go from more hypotheses. This initial hypothesis generation task
data in the domain to partial conclusions of interest, can be more or less complex, and more or less controlled
Thus diagnostic systems would typically have most depending upon the domain, and the knowledge the

e., of their knowledge in the form, "Observations -- > problem solver has. Whatever the particular method, they
diagnostic hypothesis.* Often such knowledge may all involve going from behavioral observation (test values.

% not be available, or may become too large in number signs and symptoms, etc.) to a number of hypotheses.
in complex domains, or the knowledge base may be possibly ranked.

• ,- incomplete. In these cases, it would be useful to At this stage typically a small number of the more
" .have Methods by which the system can use a model A hssaetpclyasalnme ftemr

hbeuplausible hypotheses are considered the differentials In a
of the domain or system under consideration, and compiled system, knowledge may be explicitly available for
reason with this model to generate information each hypothesis in the differential about which further
about the expected behavior of the system Such tests may be useful for confirmation or relection of that
models have been variously called causal or de" hypothesis, and in that case by comparing this knowledge
models. There has been significant interest in for the different hypotheses in the differential, the problem
representing and manipulating such models. solver can generate tests that have the potential for the

* greatest discrimination between the hypotheses If
however, this knowledge is not directly available to the

Labo atorv for Ai Re earch. Oeoattmtm of Comoutel *nd Informaron problem solver, but the structure of the device is known
Science. ih* Oh,o State Unversity. Columbus. OH 43210 His work ,n then the following reasoning can be very useful Asume
Ihi editorial aCil-t v ws supporfed bv AFOSR grant 82-0255 the structure change corresponding to each of the mal-

function hypotheses in the differential list. and reason2Army AI Center HOL OAIM-OO. Pentaqon, Washinglon. OC 20310 about what behavior will follow One would like to do this

SIGART Newsletter. July 1965. Number 3 Pare4
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qualitatively in general for a number of reasons (see the their Connectivity. Bylander and Chandrasekaran in their
paper by Forbus in this collection for these reasons) The work on consolidation reported here discuss how the be-
basic work in this area was initiated by de Kleer (1), and havior of composites of components may be put together
he and Brown at Xerox PARC. Forbus. and Kuipers (see from the behavioral descriptions of the components.
references in Forbus' paper in this issue) are among those
who have continued this line of work In this special is- Cross describes how qualitative reasoning from struc-
sue. Forbus reports, among others, on work of this type. ture to behavior is useful in evaluating proposed plans in
and gives the motivation of the research. and the com- the air traffic control domain. Both Cross and Forbus are

h putational constraints on the kinds of solutions Reason- also concerned with how qualitative reasoning and quan-
: ing from a given structure to its behavior is required not titatlve models may be combined in certain situations.only in diagnostic reasoning, it is also useful in design. Stanfill looks at some naive physics aspects of reasoning

where the problem solver will need to project a design's about simple machines. Relationship between the spatial
behavior to check conformity to design specifications, and properties of the components and possible motions is an
in planning, for very similar reasons important part of this work.

White and Frederiksen discuss qualitative reasoning in
Architecture Of Causal Reasoning the domain of circuits. The context of the work is in

teaching trouble-shooting (as opposed to automated
Causal reasoning about devices or physical systems diagnosis). The work is conducted in the domain of

" involves multiple types of knowledge structures and automotive electrical systems.
. reasoning mechanisms The following diagram schemati- 2. Given the ability to generate behavioral sequencescally indicates some of the components of this. In what for various assumptions about the components, the agent

follows, we will attempt to relate the papers in the special can often put together an account of the functions of the-. ssue to the issues as we identify themc n ofe pu to eh ra a c utof he u ci ns o t ei hatdevice, and its relationship to its structure. In simple

cases, the behavior that we talked about in 1 above can
be the function, but in general, functional specifications

Sl.~vIO 'LI. : L FuCTIONAL involve teleolo y, i. e., an account of the intentions for4-_ which the device is used. Also often behavior may need
%i' RFPE ATION to 'be abstracted to a level higher than that at which the

component is specified. E. g., in an electronic circuit, the
behavior of the components such as a transistor and a

" " :-resistor may be in terms of voltages and currents. while a

device containing them may be described as an amplifier
or oscillator. To go from the level of description in termsL-_; of 'currents" and "voltages' to one of 'amplification- and
oscillation' requires an abstraction process. This abstrac-

tion process often involves a hierarchical organization of
representation of the relation between function and struc-
ture

For purposes of our current discussion, the following Sembugamoorthy and Chandrasekaran discuss the na-
.-. stages can be recognized in causal reasoning ture of such a functional representation, and propose that

it captures in some sense an agent's understanding of1 Given a representation of the behavior of the how the device functions. In general how an agent con-
components of a device or system and a representation structs a functional account from the structure and be-
of the structure of the device, i e the interconnection of havioral specifications of the components is an interestingthe components, the ability to generate the behavioral theoretical Question. de Kleer [51 has provided some ex-
description of the device as a whole is an important part amples of tis process.
of causal reasoning In simple de,.ces or systems this

% stage will generate enough informa!,on to understand the Simmon-s. in his paper in the special issue, outlines
device But in general this technique ,s useful for produc- the issues .n representing in a graphical (and animated)
ing various fragments of behavior frr ranges of values of form the furctioning of devices and relating this to natural
components Often these fragments may need to be fur- language descriptions of how the device works
ther organized to explicitly represent the hierarchical
*sructure of the device and also to :apture the teleology 3 White the stages so far help in understanding how

Srof The Jevce as in 2 below the device %,orks, these structures will need to be used in
specific wa . s to help in specific problem solving tasks.it is to be noted that as a ru e in addition to be- The most :ommonly studied such task is diagnostic

,avoral descriptions of components substantial amounts reasoning Often, one can generate diagnostic possibilities
of donain knowledge or gereral common sense (malfunctior modes) and test data that will help in deter-
knowledge may be needed for Iti s reasoning In the mining the Lresence of these from one's understanding of
daqgram this S indicated by the box 'naive physics" how the cevice works, or in specific domains by
k-V knowledge But in specific dorr-s instead of naive knowledge anout the components and their behaviors and
physics knowledge domain-specO.: Knowledge (such as functions The paper by Sembugamoorthy and
"arous laws of electricity) will be ne.:ad Chandraseka-an outlines how their functional represen-

tation can be manipulated by device- independentin this special issue Forbus e;--nts. among others, processes t(-. produce diagnostic knowledge of this type
an account of how a qualitative a:: .nt of behavior can
be obtained given a structural des: :*,on of objects and As anor-ner example, in the HELLOS system described

SIGART Newsletter. July 1985, Numbe- .J. Page 5
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by Kramer [6J the behavior of the devices and their struc- Knowledge was represented in the form of production
ture are used to propose possible faults and generate rules. The inference engine was a very simple mechanism
tests in order to confirm these faults. This system uses It merely found the set of rules that could conclude the
the design description of digital circuits to both confirm current hypothesis, and tried each one in turn On oc-
the design and diagnose faults in the system. Expected caslon, in order to satisfy a rule, other rules would be
behaviors can be propagated through the structure in or- needed. This lead to recursion and backward chaining.
der to diagnose faults. Conflicts in this propagation are
used to generate diagnostic possibilities and tests are This approach worked for simple problems. In the
then proposed to confirm or deny the candidates, early days of expert systems, the field could only do

simple problems. Expert systems could be developed be-
In this Special Section, Davis, et al, report on what cause the inference enqine qave a very simple paradigm

has already received wide attention: their work on doing for solving problems. After a time, however, problems be-
diagnosis of digital circuits by using knowledge of struc- came too complex for simple rule bases. Especially in
ture and function. Because of the digital nature of the diagnostic reasoning, as mentioned earlier, structure and
outputs, the distinction between behavior and function is function have begun to be used to guide the effort to iso-
not as clearcut as in the work of SembugamoorthV and late the fault. Function is used two ways: first to help
Chandrasekaran. but both works emphasize the hierarchical isolate the fault in the structure, and then to further
nature of the functional representation. reason about the possible fault.

Milne presents an approach where portions of the in- The simplest use of structure is outlined in Milne s
tended behavior of the device can be directly traced to paper. By intersecting paths known to be good and bad.
certain components, i. e., the component is responsible for faults in some portions of the system can be ruled out
that part of the output behavior. Of course, in general This decision is based solely on GO/NOGO information
there will not be such simple mappings between functions The simplest algorithm is to split the possible fault path in
and components, but whenever such a mapping is pos- half. In order to pick the optimal test to perform next, in-
sible, diagnostic knowledge can be easily generated relat- formation about the cost of each test and the possible
ing undesired behavior to component malfunctions. Can- value of the test can be considered. Cantone has one of
tone, at al, describe work which has similarities to Milne's the most elaborate algorithms for this task.
work. In their work, a data base of relationships between
generic components and the kinds of device behavior they Eventually, the presence or absence of faults becomes

l contribute to is assumed available, and as the structure of insufficient to reduce the number of possible candidates

a particular device containing these components is given, any further. At this time, the expected outputs of the

their approach provides a means in some cases of devices which make up the system can be used to further

automatically putting together a collection of diagnostic identify the faults. By examining how the function of each

relations between observations and malfunctions. device should alter its inputs, candidates can be
eliminated. Davis uses the propagation of values and the

Use of such causal models for other tasks than diag- function of digital devices to rule out possible faults
nosis is of interest. Cross uses qualitative simulation for Genesereth (71 further reduces the possible faults by
evaluating plans, and White and Frederiksen use it for reasoning which inputs could not produce the wrong out-

generating explanations of device functioning in teaching. put. For example, if an AND gate has a 0 on inputl and a 1
Beck and Prietula also propose using it in teaching on input2 and produces 1 on the output, then we conclude
pathophysiology to medical students. Milne uses qualita- that inputi is at fault since its 0 value was responsible to
tive simulation in order to derive the responsibility each cause the output to be 0 This approach reduces the
component has in the final output. The representation in search considerably
Sembugamoorthy and Chandrasekaran can be used for
certain classes of 'What will happen if...' questions about a Scarl. et al., in this Special Issue describe a more

device, complicated reasoning mechanism to declare the in-
nocence of devices by inferring that their function could

Long describes a structural representation and some not have caused the possible fault. This work illustrates
processes that operate on it for reasoning about the the reasoning and issues involved in using function in this
pathophysiology of heart diseases. The use of causal way. White, et al. use a simple view of function in electri-
models in this paper is rather unusual: as he points out it cal circuits to rapidly guide a binary search for the fault
Is a sort of "visi-calc" for the patient data base. As new Their approach is at the other end of the spectrum from
data are entered, the information stored in the structural Scarl's work. Whereas Scarl uses a complex combination
model of the pathophysiologv is used to check consis- of reasoning, White's simple method is just as effective.
tency and make projections of values of other relevant although not as general.

data items. If there is no output at all, then no information is

Hudlicka and Lesser take the novel approach debug- present on which to base reasoning about the function In
_ ging problem solving systems by modeling their structure this case Milne uses the ways devices can behave such

and function in analogy with physical devices, that they produce no output and propose faults. For ex-
ample no current will flow through a resistor if it is open
In a typical series circuit, there is only one path for the

Diagnostic Strategies current, so each resistor could be open. This is analogous
to the Christmas tree light problem.

In this section, let us elaborate on the origin and use

of what one might call structure and function expert sys- When the structure cannot be used to further isolate

F. tems. the fault, then function alone must be used. Often in
electronic circuits, it is not possible to test between

In the beginning was the rule-based expert system. groups of components. in this function can be used to
deduce the possible fault. The work of Davis and

* SIGART Newsletter, July 1985, Number 93 Page 6
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Appendix B

the functioning of a complex device results from its struc-
Functional Representations and tural properties. Such a representation can then be

Behavior Composition by Consolidation: operated upon by device-independent compilers for
Two Aspects of Reasoning about Devices" producing problem solving structures of various kinds. We

have actually built such a compiler which automatically
B. Chandrasekaran. Tom Bylander, generates a diagnostic expert system from the functional

and V. Sembugamoorthy6  representation of a device. In this report, we outline the
Laboratory for Artificial Intelligence Research main ideas. The details are available in Sembugamoorthy

Department of Computer and Information Science and Chandrasekaran [7)
The Ohio State University The idea is that an agent's understanding of how a

Columbus. Ohio 43210 USA device works is organized as a representation that shows

In our laboratory, we have a number of projects on how an intended function is accomplished as series of be-

diagnostic reasoning in both medical and mechanical havioral states of the device, and how each behavior state
domains. Our work on the MDX system [21 considered transition can be understood as either due to a function of
medical diagnosis as largely a classification problem solv- a component, or in terms of further details of behavior
ing activity, and viewed diagnostic knowledge as a collec- states. This can be repeated at several levels so that ul-. ~~tion of precom p led associations betw een m anifestations ti a ly ll o th fu c on of a d i e c n be r l ed o

and classificatory diagnostic hypotheses. More recently, its structure and the functionality of the components inwe have extended our investigations in a number of direc- the structure. For example, the function that we may calltotwe ve exte ore netgatos the apurpos of hi- "buzz" of a household electric buzzer (an example system
tions, two of which are relevant to the purpose of this used by de Kler and Brown) may be represented as:
special issue.

1. One way that an agent may generate diagnostic FUNCTION: Buzz : TOMAKE buzzing(buzzer)
,i'J knowledge is by deriving it from an understanding of IF pressed (switch)*

how the device or system tnder consideration by behavior1
works. Here the concerns are: What is the nature of
the representation in which the agent's understand- and the relevant behavior, behaviorl, can be represented
ing is encoded? What are the device-independent as in figure 1.
processes which can operate on the representation BEHAVIOR: behavior1:

to produce diagnostically useful knowledge? Finally,

what other kinds of problem solving, other than Pressed(switch)*

diagnosis, can be supported by a functional I
representation? I BY behavior2

2 Given a description of possible behaviors by a com- VU ponent and given a collection of components con- (Clapper electrical connection alternates)
nected in a certain way. how can the component be- I
haviors be composed into a behavioral description of I USING-FUNCTION mechanical OF clapper
the collection as a whole? The above question is V

motivated by what we felt was a need to seek alter- Repeated-Hit(Clapper)

natives to qualitative simulation, which has been the
most common approach to generate behaviors from I USING-FUNCTION acoustical OF clapper

component descriptions. V
" In the following sections, we outline our research in these Buzzing(Clapper)

two areas III
III

Functional Representation of Devices as Deep Models Buzzing(Buzzer)
Figure 1. Behaviorl of the buzzer

V. Sembugamoorthy and B. Chandrasekaran
V. Intuitively what is being said is that the Buzz function

Human experts often use in their problem solving a is accomplished when, if the switch is pressed, the buzzer
deeper understanding of their knowledge domain than has goes to a state called buzzing, and this is accomplished
been captured in the first generation of expert systems, by a series of behavioral states that is named behavior1.
Several aspects of this deeper understanding are being in- Behaviorl says that the buzzer, on the occasion of the
vestigated under the terms causal reasoning and qualita- switch being pressed, goes to a state where the electrical
t %ive physics in both medical and non-medical domains [6, connections in the clapper alternately close and open,
3. 51. We have been working on the aspect of functional which results in the state where the clapper is repeatedly
representation, which is an expert's understanding of how hit, which results in the buzzer being in the state of

buzzing. Each transition is further explained, either in
t. terms of further details in the state transition, or in terms

SThis research is supported by National Science Foundation grant of the functions of the components. For example, the
MCS-8305032 and Ar Force Office of Scientific Research grant AFOSR transition from the clapper being alternately electrically
62-0255 connected and disconnected, to its being in the

repeated-hit state, is explained by relating it to the
V Sernbugamoorthy is currently ai Schlumberger Well Service. P0 mechanical function of the clapper.

on 200015. Austin. Teas 78720 USA
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Let us see how this fragment of functional represen- We need to investigate the design of the two other
tation can be used to generate a piece of diagnostic dimensions of device representation Also the causal
knowledge that may be used by a diagnostic expert sys- dimension has to be integrated with the other two in a
tam. A diaqgnostic comrntp_ will function as follows. Sup- disciplined, practically useful, and cognitively meaningful
pose a buzzer does not buzz when its switch is pressed. framework. We need to identify the compilation processes
In order to find out what malfunctions are causing this. that come into play to generate other types of expert
the diagnostic compiler will reason thus on the basis of problem solving structures, such as the predictive reason-
the functional specification and the behavior specifica- ing just discussed.
tion: The functional specification tells it that the problem
is in behavior1, since the Buzz function is failing. In broader terms, this work is part of our on-going
Behaviorl, on examination, can result in a series of effort to uncover the multiplicity of generic structures and

hypotheses. e.g.: processes involved in knowledge-based problem solving
If switch is pressed, but the clapper is not alternatl Whether or not one accepts the hypothesis that

ey homogeneous and unitary architectures such as produc-
electrically connected and disconnected, problem is tion systems are adequate at the level of symbol process-
in behavior2. ing in the mind. we nevertheless believe that in order to

" If switch is pressed, the clapper's electrical connec- account for knowledge-based problem solving activity at
tivity alternates, but the clapper doesn't hit- the information processing level there is a need to identify
repeatedly, the cause of buzzer not buzzing is some a richer collection of generic knowledge structures and a
mechanical malfunction of the clapper, correspondingly rich collection of knowledge-processing

mechanisms that operate on them.

The power of this method for representing how a
device works is due in large measure to explicitly distin-
guishing five aspects of an agent's understanding of the Oualitative Reasoning About Physical Systems
device, and treating each aspect appropriately. The dis-
tinctions hold at every level of organization on which the Tom Bytander and B. Chandrasekaran
device is represented. The five aspects are:

* STRUCTURE - this specifies the relationships be- A recent Al approach for reasoning about the be-
tween components. havior of physical systems is qualitative simulation TheSU cponts. ctetstructure of the physical system, and knowledge about the

% devicTON or compntspecified asin te prsponse behavior of its components are used to derive a collection
device or component, specified as what the response of constraints. Using these constraints, the simulation isis to a stimulus. performed and its results are interpreted. This research* BEHAVIOR - this specifies how, given a stimulus. the investigates a new method of reasoning for this problem

response is accomplished, which we call consolidation. Again. only the main ideas
,; * GENERIC KNOWLEDGE - chunks of deeper causal will be described here Further discussion can be found in

knowledge that have been compiled from various Bylander and Chandrasekaran [I.

domains to enable the specification of behavior. The usefulness of investigating this form of reasoning
* ASSUMPTIONS - other specifications of the con- can be seen within the context of diagnostic reasoning. as

ditions under which various behaviors or conditions follows. Often an agent does not have direct diagnostic
occur. knowledge about a system In that case. he has to resort

to the deep knowledge structures both about the device*, In our research we have identified three dimensions adaottepyia ol nodrt nwrqeto
-o and about the physical world in order to answer question

*.. to a functional representation: causal, which accounts for of the form: 'What behavior wll follow if a particular
how function which arise from causal chains can be stutural cha (a ion too p ' teua
represented; tmmpoall, which represents the temporal structural change (a malfunction) took place7" In the ab-
rreeationsisene tmioral, bweh rer seent oald sence of compiled knowledge for this task, the agent willqrelationships within and between each causal event; and need to put together. i.e.. derive, a behavior from his

IR what we have called the communication dimension, which noed of the behavior of tc n
J', knowledge of the behavior of the components

accounts for information exchange from different subsys-
tems. So far we have only developed the representational The major processing sequence of consolidation is to
language for the causal dimension, and we are currently hypothesize a composite component consisting of a

,..",working on extensions to other dimensions. selected subset of components, and then to infer the be-
havior of the composite from the behaviors of the com-

A "deep" model, such as the one outlined above, will ponents. Successful application of this sequence on in-
be particularly persuasive if can support more than one creaslngly larger composite components results in infer-

" type of problem solving activity. We have briefly indicated ring the behavior of the whole system As a byproduct. a
its usefulness in supporting diagnostic reasoning. It can hierarchical behavior structure is produced which explains
also be used to support a form of predictive reasoning of how the overall behavior is caused by the components'

the type: "What will happen if < >?" For example t if one behavior. Also note that each reasoning step is localizedi over a small number of components and subsystems.w e re to a s k , in th e b u z z e r c a s e , "W h a t w ill h a p p e n if th e o v r a s ll n m e of c p n nt a d s u y t m .

, clapper is malfunctioning acoustically?," it is easy to iden- avoiding the global problem solving required for qualitative
tify behavior1 as the one that will be affected, in par- simulation.
ticular to infer that while the clapper arm will continue to
hit the clapper repeatedly, it will fail to make the buzzer This research also proposes a novel representation

%* buzz. for behavior. Current theories describe behavior as con-

," 4 -straints and operations on the components' quantities and
Directions for future research include the following: derivatives of quantities, which would imply that con-

We need to develop methods to check the solidation is mainly a matter of algebraic manipulation.
correctness/consistency of a given device representation. Instead, we describe the behavior of a component by the
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actions that the component performs upon "substances." - - --------- +

small set of behavior schemas which can directly I + Allow electricity between -

represent these actions, and which allow inferences about

the behavior of composite components. It is this inferen- +- - terminal and + terminal

tial capability which gives consolidation credibility since I
otherwise, complex algebraic problem solving is required. I
Some of the schemas which we have identified so far are: I end1

1. Allow. The component permits a specified kind of +------

substance to move from one place to another. I Allow electricity between endi

2. Influence. The component tries to move a specified I switch I and end2, state closed

kind of substance. There are two subtypes accord- I I
ing to the spatial relationship of the influence with .----------+

potential sinks and sources. I end2

* Pump. The component tries to move a sub- I
stance through it, e.g., a battery has a pump lend1 allow electricity between

electricity behavior from the negative to the + ......... + end 1 and end2

• positive terminal. The sink and source are ex- [ Cr e lgt iin light bulb

ternal to a pump behavior. +---Illht bulbl dependency

* Expel. The component tries to move a sub- end2 I[move electricity between endI

stance from (or to) an internal container. e g., a ---------- + and end2

balloon has a expel air behavior.

3. Move. The component moves a specified kind of Figure 2. Light Bulb Device

, substance from one container to another along a

specified path. Move behaviors are implicitly con- During the consolidation process, a composite com-

strained by the amount and capacity of the con- ponent consisting of the light bulb and the switch may be

tainers. selected for processing. Because the switch's allow
4 Create The component creates a specified kind of electricity behavior has a serial structural relationship with

substance in a container, e g., a light bulb has a the light bulb's allow electricity behavior (satisfying the
cbtae i t elight bulb serial allow causal pattern), an allow electricity behavior

from end1 of the switch to end2 of the light bulb is in-
5 Destroy The component destroys a specified kind ferred. This allow behavior occurs only during the closed

of substance in a container, e.g., an acoustic in- state of the switch, so the composite also has states of
sutator has a destroy sound behavior. closed and open. General knowledge about electricity has

A behavior can be hypothesized based on causal patterns an important role to play in this inference, specifically in

of behavior and structure. Its existence is confirmed, and determining the values of relevant attributes, such as
its parameters are determined using knowledge about the electrical resistance, of the inferred allow electricity be-
physics of the substance being acted upon. Consolidation havior. The switch-light bulb composite also has a create
controls the inference of behavior by specifying the con- light behavior, which is "copied" from the light bulb's be-
text (the composite component) in which inference can havior description.
take place. When this composite is combined with the battery, an

4 The causal patterns are similar to the process allow electricity behavior around the circuit is inferred.
descriptions developed by Forbus (4). Both identify the Again. the allow behavior only occurs during the closed
conditions necessary for some behavior to happen. One state This behavior and the battery's pump electricity
important difference is that the causal patterns are generic behavior satisfy another causal pattern, giving rise to a
to all substances. While a process description can be move electricity behavior around the circuit during the

stated at a high level of generality, there is no commit- closed state. This move behavior satisfies the dependency
ment by the theory to any particular level of generality, of the create light behavior, thus the process infers that
Another difference is that process descriptions state only the device creates light while it is in the closed state.
how quantities change. while causal patterns apply to In the inference of the creation of light, every be-
situations, such as two batteries connected in series. hi the compents an heleet of strhturer whc
where no physical change takes place.havior of the components and element of structure which

plays some role in the creation of light has been used in

As an example, consider the device pictured in figure the consolidation process. The explanation of this in-
2 The battery in the figure pumps electricity from one of ference provides a complete causal account of the crea-
its terminals to the other It also allows electricity to flow tin of lght in the light bul: system in terms of the
between its terminals (otherwise the pumping action cormponents' behavior and the device's structure.

.* would have no effect). The switch allows electricity to
flow through it when the state of the switch isWe are implementing a version of consolidation,

The light bulb also allows electricity to move through it, which will depend upon a few simplifying assumptions.
and creates light whenever electricity moves through it. The structural description will be limited to connection of
The detais of the representation and other behaviors of components and containment of substances, thus reducing
these components have been suppressed for explanatory the amount of spatial reasoning required. Numerical at-
purpses tributes of behaviors (such as amount of influence or rate

of movement) will be specified qualitatively. We hope to

discover the limits of consolidation under these assump-

'y
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Generic Tasks in Expert System Design and
Their Role in Explanation of Problem Solving'

B. Chandrasekaran
Laboratory for Artificial Intelligence Research

Department of Computer and Information Science
The Ohio State University

Columbus, Ohio 43210

Abstract

We outline the elements of a framework for expert system design that we
have been developing in our research group over the last several years. This
framework is based on the claim that complex knowledge-based reasoning
tasks can often be decomposed into a number of generic tasks each with as-
sociated types of knowledge and family of controd regimes. At different stages
in reasoning, the system will typically engage in one of the tasks, depending
upon the knowledge available and the state of problem solving. The ad-
vantages of this point of view are manifold: (i) Since typically the generic
tasks are at a much higher level of abstraction than those associated with
first generation expert system languages, knowledge can be represented .'
directly at the level appropriate to the information processing task. (ii)
Since each of the generic tasks has an appropriate control. regime, problem
solving behavior may be more perspicuously encoded. (iii) Because of a
richer generic vocabulary in terms of which knowledge and control are
represented, explanation of problem solving behavior is also more perspicuous.
We briefly describe six generic tasks that we have found very useful in our
work on knowledge-basnd reasoning: classification, state abstraction,
knowledge-directed retrieval, object synthesis by plan selection and refine-
ment, hypothesis matching, and assembly of compound hypotheses for abduc- r
tion.

'Rearch supported by Defnse Advanced Research Projects Agency, RADC Contract
F30602-65-C-0010, and Air Force Office of Scientific Research grus 82-0255.,
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1. Information Processing Tasks in Knowledge-Based Reasoning

UIntuitively one thinks that there are types of knowledge and control
regimes that are common to diagnostic reasoning in different domains, and
similarly there would be common structures and regimes for say design as an
activity, but that the structures and control regimes for diagnostic reasoning
and design problem solving will be generally speaking different. However,
when one looks at the formalisms (or equivalently the languages) that are
commonly used in expert system design, the knowledge representation and
control regimes do not typically capture these distinctions. For example, in
diagnostic reasoning, one might generically wish to speak in terms of mal-
function hierarchies, rule-out strategies, setting up a differential, etc., while
for design, the generic terms might be device/component hierarchies, design
plans, ordering of subtasks, etc. Ideally one would like to represent diagnos-
tic knowledge in a domain by using the vocabulary2 that is appropriate for
the task. But typically the languages in which the expert systems have been
implemented have sought uniformity across tasks, and thus have had to lose
perspicuity of representation at the task level. The computational univer-
sality of representation languages such as Emycin or OPS5 - i.e., the fact
that any computer program can be written in these languages, more or less
naturally - often confuses the issue, since after the system is finally built it
is often unclear which portions of the system represent domain expertise and
which are programming devices. In addition, the control regimes that these
languages come with (in rule-based systems they are typically variants of
hypothesize and match, such as forward or backward chaining) do not ex-
plicitly indicate the real control structure of the system at the task level.
E.g., the fact that RI (121 performs a linear sequence of subtasks -- a very
special and -atypically simple version of design problem solving -- is not ex-
plicitly encoded: the system designer so to speak "encrypted" this control in
the pattern-matching control of OPS5.

These comments need not be restricted to the rule-based framework. One
could represent knowledge as sentences in a logical calculus and use logical
inference mechanisms to solve problems. Or one could represent it as a
frame hierarchy with procedural attachments in the slots. (It is a relatively
straightforward thing, e.g, to rewrite MYCIN [141 in this manner, see 161.)

., In the former, the control issues would deal with choice of predicates and
clauses, and in the latter, they will be at the level of which links to pursue
for inheritance, e.g. None of these have any natural connection with the
control issues natural to the task.

~ 2 We aso use the term primitives of the language in the rest of the paper to refer to the

vocabulary.

N
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Actually the situation is even worse: because of the relatively low level of
abstraction relative to the information processing task, there are control
issues that are artifacts of the representation, but often in our opinion misin-
terpreted as issues at the "knowledge-level." E.g., rule-based approaches of-
ten concern themselves with conflict resolution strategies. If the knowledge
were viewed at the level of abstraction appropriate to the task, often there
will be organizational elements which would only bring up a small, highly
relevant pieces of knowledge or rules to be considered without any conflict
resolution strategies needed. Of course, these organizational constructs could
be "programmed" in the rule language, but because of the status assigned to
the rules and and their control as knowledge-level phenomena (as opposed to
the implementation level phenomena, which they often are), knowledge ac-
quisition is often directed towards strategies for conflict resolution, whereas
the really operational expert knowledge is at the organizational. level.

This level problem with control structures is mirrored in the relative
poverty of knowledge-level primitives for representation. E.g., the epistemol- S

ogy of rule systems is exhausted by data patterns (antecedents or subgoals)
and partial decisions (consequents or goals), that of logic is similarly by
predicates, functions, and related primitives. If one wishes to talk about
types of goals or predicates in such a way that control behavior can be in-
dexed over this typology, such a behavior can often be programmed in these
systems, but there is no explicit encoding of them that is possible. E.g.,
Clancey [81 found in his work using Mycin to teach students that for ex-
planation he needed to attach to each rule in the Mycin knowledge base en-
codings of types of goals so that explanation of its behavior can be couched
in terms of this encoding, rather than only in terms of "Because <..> was a
subgoal of <..>."

The above is not to argue that rule representations and backward or for-
ward chaining controls are not "natural" for some situations. If all that a
problem solver has in the form of knowledge in a domain is a large collec-
tion of unorganized associative patterns, then data-directed or goal-directed
associations may be the best that the agent can do. But that is precisely .
the occasion for weak methods such as hypothesize and match (of which the
above associations are variants), and, typically, successful solutions cannot be
expected in complex problems without combinatorial searches. Typically,
however, expertise consists of much more organized collections of knowledge,
with control behavior indexed by the kinds of organizations and forms of
knowledge ip them.

To summarize the argument so far: There is a need for understanding the
generic information processing tasks that underlie knowledge-based reasoning.
Knowledge ought to be directly encoded at the appropriate level by using

.5m
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primitives that naturally describe the domain knowledge for a given generic
task. Problem solving behavior for the task ought to be controlled by
regimes that are appropriate for the task. If done correctly, this would
simultaneously facilitate knowledge representation, problem solving, and ex-

planation.

At this point it will be useful to make further distinctions. Typically
many tasks that we intuitively think of as generic tasks are really complex
generic tasks. I. e., they are further decomposable into components which
ar more elementary in the sense that each of them has a homogeneous con-
trol regime and knowledge structure. For example, what one thinks of the

idiagnostic task, while it may be generic in the sense that the task may be
quite similar across domains, it is not a unitary task structure. Diagnosis
may involve classificatory reasoning at a certain point, reasoning from one
datum to another datum at another point, and abductive assembly of mul-
tiple diagnostic hypotheses at another point. Classification has a different
form of knowledge and control behavior from those for data-to-data reason-
ing, which in turn is dissimilar in these dimensions from assembling
hypotheses.

Thesis: Given a complex real world knowledge-based reasoning task, and a

set of generic tasks for each of which we have a representation language and
a control regime to perform the task, if we can perform an epistemic analysis
of the domain such that (i) the complex task can be decomposed in terms of
the generic tasks, (ii) paths and conditions for information transfer from the
agents that perform these generic tasks to the others which need the infor-
mation can also be established, and (iii) knowledge of the domain is avail-
able to encode into the knowledge structures for the generic tasks: then that
complex task can be "knowledge-engineered" successfully and perspicuously.

* Notice that an ability to decompose complex tasks in this way brings with it
the ability to characterize them in a useful way. We can see, e.g., that the
reason that we are not yet able to handle difficult design problem solving is
that we are often unable to find an architecture of generic tasks in'terms of
which the complex task can be constructed.

In the rest of this paper, we will briefly describe some of the elementary
generic tasks that we have had occasion to identify and use in the construc-
tion of expert systems. While we have been adding to our repertoire of
elementary generic tasks over the years, the basic elements of the framework
have been in place for a number of years. Our work on MDX [4, 51, e.g.,
identified classification, knowledge-directed information passing, and hypothesis
matching as three generic tasks, and showed how certain classes of diagnostic
problems can be implemented as an integration of these generic tasks. (We
have earlier referred to them as problem solving types, but in [61, we began

M-"



to call them generic tasks.) Over the years, we have identified several 4

others: object synthesis by plan selection and refinement [V, state
abstraction [v7, and abductive assembly of hypotheses [l11. There is no.claimr
that these are exhaustive; in fact, our ongoing research objective is to iden-
tify other useful generic tasks and understand their knowledge representation
and control of problem solving.

2. Some Generic Tasks

2.1. Characterization of Generic Tasks

Each generic task is characterized by the following: "

1. A task specification in the form of generic types of input and out-
put information.

2. Specific forms in which the basic pieces of domain knowledge is
needed for the task, and specific organizations of this knowledge
particular to the task.

3. A family of control regimes that are appropriate for the task.

From the nature of the control regime, we can determine the types of
strategic goals the problem solving for' the task has. These goal types will
play a role in providing explanations of its problem solving behavior.

When a complex task is decomposed into a set of generic tasks, it will in
general be necessary to provide for communication between the different
structures specializing in these different types of problem solving. Note that
a decomposition does not imply that there is a..predetermined temporal or-
dering on when the generic tasks are performed: typically the agent for a
generic task is invoked when another agent needs information that the former
can provide. Further there is no implication that there is a unique decom- .

position. Depending upon the availability of particular pieces of knowledge,
different architectures of generic tasks will typically be possible for a given
complex task.

We will now proceed to a brief characterization of these generic tasks.

L I. Cla"ification

Task specification: Classify a (possibly complex) description of a
situation as an element, as specific as possible, in a classification
hierarchy. E.g, classify a medical case description as an element
of a disease hierarchy.

L

I.
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Forms of knowledge: <partial situation description> --- >p evidence/belief about confirmation or disconfirmation of clas-
sificatory hypotheses. E.g., in medicine, a piece of classificatory
knowledge may be: certain pattern in X-ray & bilirubin in blood
-> high evidence for cholestasis.

Organization of knowledge: The above classificatory knowledge
distributed among concepts in a classificatory concept hierarchy.
Each conceptual "specialist" ideally contains knowledge that helps
it determine whether it (the concept it stands for) can be
established or rejected. The form of the knowledge as stated
above is the form needed for this decision.

Control Regime: (Simplified form) Problem solving is top down.
Each concept when called tries to cstablish itself. [f it succeeds,
it lists the reasons for its success, and calls its successors. which
repeat the process. If a specialist fails in its attempt to establish
itself, it rejects itself, and all its successors are .also automatically
rejected. This control strategy can be called Establish-Refine, and
results in a specific classification of the case. (The account is a
simplified one. The reader is referred to 1 for details and
elaborations.)

Goal types: E.g., Establish <concept>, Refine (subclassify)
<concept>

Example Use: Medical, diagnosis can often be viewed as a clas-
sification problem. In planning, it is often useful to classify a
situation as of a certain type, which then might suggest an -ap-
propriate plan.

H [[. State abstraction

Task Specification: Given a change in some state of a system,
provide an account of the changes that can be expected in the
functions of the system. (Useful for reasoning about consequences

rr' -of actions on complex systems.)

Form of knowledge: <change in state of subsystem> --- >
<change in functionality of subsystem = change in state of the
immediately larger system>

Organization of Knowledge: Knowledge of the above form dis-
tributed in conceptual specialists corresponding to
system/subsystems. These conceptual specialists are connected in
a way that mirrors the way the system/subsystem is put together.

4..
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Control regime: Basically bottom up, but follows the architecture
of the system/'subsystem relationship. The changes in states are I
followed through, interpreted as changes in functionalities of sub-
systems, until the changes in the functionalities at the level of
abstraction desired are obtained.

Goal Types: E.g., Abstract consequent state, Deduce change in
functionality.

Example Use: Answering questions of the form: "What will hap-
pen if this. valve is closed, while the turbine is running?" Generic
usefulness is in consequence finding.

1 [[[. Knowledge-Directed Information Passing

Task specification: Given attributes of some datum, it is desired
to obtain attributes of some other datum, conceptually related to
the original datum.

Forms of Knowledge: i. Default value of <attribute> of
<datum> is <value> ii. -<attribute> of <datum> is inherited
from <attribute> of parent of <datum> iii. <attribute> of
<datum> is related as <relation> to <attribute> of children of
<datum>. iv. <attribute> of <datum> is related as <relation>
to <attribute> of <concept>.

Organization of Knowledge: The concepts are organized as a
frame hierarchy. Default for slots corresponds to form i. above,
the IS-A or PART-OF links between parents and children deter-
mine the types of inheritance in form ii. and iii. Procedural at-
tachments or "demons" are used to encode form iv.. Each frame
is a specialist in knowledge-directed data inference for the concept.

Control regime: A concept, when asked for the value of one of
its attributes first checks the data base to see if the actual value
is known, then uses inheritance relationships to determine if the
value can be obtained by inference from the values of appropriate
attributes of its parent or children, then uses any demons that
may be attached to the slot to query other concepts in other
parts of the hierarchy for values of their attributes. If none of it
succeeds and if it is appropriate the default value is produced as
the value.

This is basically a hierarchical information-passing control regime,
with demons providing an override of the hierarchical regime.

-
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Goal Types: E.g., Inherit value of <attribute>. Ask for <concept.
attribute value) to infer <attribute> by <relation>.

Example Use: Knowledge-based data retrieval tasks in wide
variety of situations. Inferring a medical datum from another,
when the latter is available but the former is needed for diagnos-
tic reasoning. E.g., diagnostic reasoning needs information about
whether the patient has been exposed to "anesthetics." because it
has diagnostic knowledge that relates a diagnostic conclusion to
this datum, but the patient data do not include any reference to
"anesthetics," but mentions "major surgery a few weeks before."
Assuming that the knowledge base for the data retrieval system
encodes the piece of knowledge that relates "surgery" and
"possible exposure to anesthetics," performing the reasoning that
connects the two data items is an example of knowledge-based
data retrieval.

9 IV. Object Synthesis by Plan Selection and Refinement

Task Specification: Design an object satisfying specifications
(object in an abstract sense: they can be plans, programs, etc.).

Forms of knowledge: Object structure is known at some level of
abstraction, and pre-compiled plans are available which can make
choices of components, and have lists of concepts to call upon for
refining the design at that level of abstraction.

Organization of Knowledge: Concepts corresponding to
"components" organized in a hierarchy mirroring the object struc-

• .ture. Each concept. has plans which can be used to make com-
mitments for some "dimensions" of the component,

Control Regime: Top down in general. The following is done
recursively until a complete design is worked out: A specialist cor-
responding to a component of the object is called, the specialist
chooses a plan based on some specification, instantiates and ex-
ecutes some part of the plan which suggests further specialists to
call to set other details of the design. Plan failures are passed up
until appropriate changes are made by higher level specialists, so A

that specialists who failed may succeed on a retry.

Goal Types: E.g., Choose plan, execute <plan element>, refine
<plan>, redesign (modify) <partial design> to respond to failure
of <subplan>S, select alternative plan, etc.

Example: Expert design tasks, synthesis of everyday plans of ac-
tion.

",-,...
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* V. Hypothesis Matching
a

Task Specification: Given a hypothesis and a set of data that W-

describe the problem state, decide if the hypothesis matches the
situation.

Form and Organization of Knowledge: (One form) A hierarchical
representation of evidence abstractions, top node is the degree of
matching of the hypothesis to the data, and nodes at a given j

level are components of evidence for the evidence abstraction at
the higher level. E. g., say the hypothesis of goodness of a posi-
tion in a game is the one to be matched against the data describ-
ing the board configuration. Goodness may be defined at the top
level in terms of two abstractions: defensibility and offensive
opportunities. Form of knowledge then for this must be such as
to enable mapping degrees of belief in each of these evidence
abstractions to degree of belief in the goodness abstraction. The
defensibility abstraction, e.g., may in turn be defined either by
direct data or intermediate abstractions. Samuel's signature tables
can be thought of as performing this task.

Goal types: Evaluate evidence for hypothesis, evaluate evidence for
contributing abstraction .

e VL Abductive Assembly of Ezplanatory Hypotheses

Task Specification: Given a situation (described by a set of data
items) to be explained by the best explanatory account, and given
a number of hypotheses, each associated with a degree of belief
and each of which offers to explain a portion of the data (possibly
overlapping with data to be accounted for by other hypotheses),
construct the best composite hypothesis out of the given
hypotheses.

Forms of Knowledge: causal or other relations (such as incom-
patibility, suggestiveness, special case of) between the hypotheses,
relative significance of data items.

Organization of Knowledge:* For relatively small number of
hypotheses, this is a global process. For large numbers, some
form of recursive assembly will be called for, implying knowledge
organized at different levels of abstraction of the assembled
hypotheses.

Control Regime: (Simplified version; see iIli for a fuller "
discussion.) Assembly and criticism alternate. In assembly, a

U
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means-ends regime, driven by the goal of explaining all the sig-
nificant findings, is in control. At each stage. the most significant
datum to be explained results in the best hypothesis that offers to
explain it being added to the composite hypothesis so far as-
sembled. After each assembly. the critic removes explanatorily su-
perfluous parts. This loops until all the data are explained, or no
hypotheses are left.

Goal Types: e.g, account-for <datum>, check-superfluousness-of
<hypothesis>.

-Example Use: In medical diagnosis, the classification generic task
may produce a set of classifications, each of which accounts for
some of the data. The best account needs to be put together.
The Internist system 131 and the Dendral system '2' perform this
type of task as part of their problem solving.

3. Encoding Knowledge at the Level of the Task

For each generic task, the form and organization of the knowledge directly
suggist the appropriate representation in terms of which domain knowledge
for that task can be encoded. Since there is a control regime asso-ated

p. with each task, the problem solver can be implicit in the representation lan-
guage. I.e., as soon as knowledge is represented in the shell corresponding
to a given generic task, a problem solver which uses the control regime on
the knowledge representation created for domain can be created by the inter-
preter. This is similar to what representation systems such as EMYCIN do,
but note that we are deliberately trading generality at a lower level to
specificity, clarity, richness of ontology and control at a higher level.

We have designed and implemented representation languages for a simpler
versions of two of these generic tasks: classification [31, and object synthesis
by selection and refinement [11. ' We plan to implement a family of such
representation languages.

4. Generic Tasks and Explanation of Problem Solving

We have developed a framework for providing explanations for the decisions
recommended by expert systems, and this is the basis of a four-year research
effort sponsored by the Defense Advanced Research Projects Agency. For
the purpose of this discussion, we can say that understanding the problem
solving behavior of an expert problem solving system requires inspecting
three structures, each corresponding to a type of explanation:
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Type 1: trace of run-time, data-dependent problem solving behavior, viz..
which pieces of knowledge were used and how. E.g., Why do you say that
the patient has cholestasis? Ans: Because the patient has high bilirubin in
blood, and jaundice and Xrays suggest an obstruction in the biliary duct. p,

This is typically done by checking which data items in the current case
matched the piece of knowledge that enabled the system to make a par- di

ticular decision.

Type 2: understanding how a piece of knowledge relates to the domain.
how it can be justified. E.g., Why do you say that high bilirubin in blood
suggests cholestasis? Here whatever answer is given, no data about the cur-
rent case are being used. The system is really being called upon to justify
its knowledge.

Type 3: understanding the control strategy used by the program in a par-
ticular situation. E.g. Why didn't you consider portal hypertension in this
case? Ans: Because I had ruled out circulatory diseases, portal hypertension
is a special case of circulatory diseases, and my strategy is not to consider
special cases when I have ruled out the general case.

The explicit encoding of the generic aspects of knowledge and control be-
havior for each generic task can be directly used to produce explanations of
Type 3. We will give some examples

Classification

Q: Why do you wish to know if the patient had been exposed to anes-
thetics?

A: Because I was trying to establish hepatitis. "b

Q: Why? :

A: Because I had already established that the patient had liver disease.
Now I am trying to subclassify the cas, and hepatitis is one of the sub-
categories. If I can reject hepatitis, I can reject all the following diseases
which are its subclasses.

State Abstraction

Let us assume that the user had asked the system, "What will happen if "

Valve A is closed?" P.

Q: Why do wish to know the engine speed?

77
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A: Because I am trying to decide the change in functionality of the cool-
ing system when Valve A is closed, and engine speed is a datum I need for
this.

Q: Why are you considering the cooling syst-m?

A: Because, Valve A is a component of the Cooling system.

Data Retrieval

Q: Did the patient have exposure to anesthetics?

A: Did he have any surgery?

Q: Why do you ask?

A: I do not have direct record of anesthetic exposure. I failed to inherit
a value for this attribute from its parent - no direct record of any drug not
being given, I also failed to infer No Exposure, by ruling out its children.
Then the Anesthetic concept suggested that If surgery had been performed,..
anesthetic can be reasonably inferred.

Hypothesis Assembly

Q: Why was hypothesis part H' included in the best explanation?

A: In order to account-for <datum>

Q" Why wasn't H" chosen to -explain D?

A: Because assuming <partially assembled conclusion>, H' is the best way
to explain <cluster of data>.

Q: Why was hypothesis H accepted?

A: Because it is the only plausible way to account-for <cluster of data>.

Plan Refinement

Q: Why did you choose Plan A'?

A: Because, [ am trying to complete the specification for Plan A, for
refining which I need <subgoai> accomplished. The specialist for <subgoal>
selected Plan A' due to <reasons>.

.Z..
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Q: What will you do if you fail in Plan A'?

A: <Subgoal> specialist will select Plan A".

Q: What if it fails?

A: Parent specialist will redesign Plan A, by weakening <constraint>.

In the foregoing examples, the italicized terms represent the type of goal
that is being pursued. Points to be noted here are: this explanatory richness
(compared to the terminology of goal-subgoals) is made by possible by en- %

coding the control regimes specific to each generic task; and, the explanation -

is directly related to the problem solving of the system.

4.1. Comparison with Related Work

With respect to providing explanation there are two key ideas that we are
offering in this paper: one, explanation of problem solving strategies, which
are manifested as appropriate control behavior by the problem solver, can be
based on the generic task that a problem solver is engaging at a given stage
in problem solving; and two, which is implicit in what we have said so far,
is that control for each task be represented abstractly so that explanations
can be couched in terms of these abstractions.

Swartout and Clancey-have done significant investigations of issues in ex-
planation generation by problem solving systems. The work of both authors
uses the notion of abstract representation of control as a basic idea for ex-
planation. It will be useful to relate our ideas to those of these inves-
tigators.

4.1.1. The Work of Clancey's Group:

Clancey has contributed several ideas that are relevant in this context:
one, in '91, he discussed the advantages of abstract representation of control
in reasoning systems, and specifically pointed out their potential role in ex-
planation; two, in (81, he proposed that, in order to give explanatory
capabilities to MYCIN for purposes of teaching (he created a system called
GUIDON based on MYCIN) an explanatory skeleton be attached to each
rule encoding the role of the rule in problem solving;, and three, in his work
on NEOMYCIN [101, he and his group represent, the diagnostic strategy ex-
plicitly (in terms of abstract subtasks and their relations to diagnosis on the
one hand and to the domain data on the other).

The most advanced work by Clancey's group on explanation is that on

-
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NEOMYCIN, and thus we will concentrate on that in this section. Here
diagnostic strategy is represented explicitly as a collection of subtasks. with
conditions for moving from subtask to subtask also explicitly stated. This
representation enables an explanation of strategy to be produced at the task
and sub-task level of generalization.

This work is in many ways quite close in spirit to our approach. with the
following comments throwing light on the differences.

1. NEOMYCIN's representation of abstract strategies is implemented
as a body of metarules in the rule-based paradigm. We would
note here that the rule paradigm plays no intrinsic role in this
and can be viewed as merely an implementation language. In our
approach we would advocate a representation language with
generic primitive terms for directly encoding control along the
lines discussed earlier in the paper.

i 2. The above comment raises the question of the appropriate lan-
guage in which couch the tasks abstractly. In this paper we have

.: proposed a set of generic tasks and suggested that they (and
others to be added as needed on empirical grounds, but at about
the same level of grain size) comprise the elementary tasks in
terms of which complex (generic) tasks such as diagnosis be
decomposed. While we have been able to demonstrate this claim
to a certain extent for the diagnostic strategy employed by the
MDX system, it is a matter of further empirical research to see
whether and how NEOMYCIN's diagnostic strategy be so decom-
posed.m

With respect to point 2 'above, are there advantages from. an explanation
point of view for such a decomposition even if it were possible? At this

* point we can only give the following tentative answers. To the extent that
the subtasks in NEOMYCIN were developed by a direct study of the diag-
nostic task, it is likely that some of these tasks (and consequently the terms
which they contribute to the explanation) are more informative at the diag-
nostic task level. But if our theory is right, the additional abstractions
specific to diagnosis can be obtained naturally from the abstraction at the
generic task level. The generic tasks in our sense will have the further ad-
vantage of providing the primitives for other "molecular" tasks in addition to
diagnosis.

Ud
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4.1.2. Swartout and the XPLAIN System:

Swartout's XPLAIN system A51 can be summarized for our purposes as fol-
lows. It has a component called Domain Principles. which is best thought of
as a base of control abstractions of the goal-subgoal type. They are of the
form, "If goal is G, and if <patterni>, ... <patternN> occur in the domain
knowledge base. set up subgoals SG1, ... SGN respectively." As a concrete

example, G might be "Administer <drug>." patterni might be, "<finding>
and <drug> cause <bad side effect>." and SGl might be. "Control toxicity
of <drug>." One can imagine an instructor teaching a group of students

about administration of drugs in general, and telling them that if, for a par-
ticular drug, there is a possibility of a bad side effect, then make sure to do
whatever will be needed to control the drug toxicity. Note that this has
some degree of generality in that it can be used to set up systems for a
number of different drugs: if a certain drug does not cause bad side effects.
then this particular subgoal will not be set up by the system. [n general
one can best think of this approach as specification of an expert system
generator, in that the same Domain Principles base can be used to generate,
e.g., systems to recommend the administration of different drugs. The
Domain Principles then can be thought of as a collection of control abstrac-
tions. However, these control abstractions are domain-specific. Terms such
as administer and control toxicity in the example above are used to index
and name goals, but do not have general purpose problem solving relevance
across domains. The only elements in the above example that are generic in
our sense are, If goal, and set up subgoal...

As one would expect, the basis for the explanation capability of XPLA[N
arises from the goal-subgoal control abstractions in Domain Principles. The
generation of explanation in XPLAIN is very similar to .that in rule-based
systems in that the goal-subgoal structure in Domain Principles is used for
the explanation in a way very similar to the rule-tracing in backward-
chaining systems such as Mycin. While explanation in Mycin is done using
the trace of the rules that fired in a particular problem, XPLAIN uses the
goal-subgoal relationships -that went into the construction of the expert sys-
tem, with very similar effects. XPLAIN can use the names of the goals and
subgoals and the terms in the patterns to provide a richer quality to the ex-
planation: "Because goal is to administer digitalis, and digitalis causes dan-
gerous side effects, there is a need to control toxicity of digitalis."

Where our work differs from this effort is in the power that is available in
the control abstractions that are indexed by generic tasks. This enlarges the

kinds of explanations that can be provided in a domain-independent way,
and that can arise directly from the control behavior in the problem solving
process.

'S
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FROM NUM]BRS TO SYMBOLS TO KNOWLEDGZ STRUCTURES:
PATTERN RJCOGNITION AND ARTIFICIAL INTILLIGENCZ PERSPECTIVES

ON TRE CLASSIWICATION TASK

B. Chandrasekaran

Laboratory for Artificial Intelligence Research
Department of Computer & Information Science

The Ohio State University
Columbus, OH 432101 USA

In this paper we consider a very general information processing
task: elosuification, and review the perspectives of the classical pat-
tern recognition approaches and the more recent artificial
intelligence/ knowledge-based systems point of view. As the corn-
plexity of the problem increases, we trace the evolution of the al- "-
gorithms from numerical parameter setting schemes through those
using symbolic abstractions and then relations between symbolic en-
tities, and finally to complex symbolic descriptions which incorporate
explicit domain knowledge.

1. INTRODUCTION

In this paper we consider a very general information procesing task: elasiication, and
review the perspectives of the classical pattern recognition approaches and the more
recent artificial intelligence/ knowledge-based systems point of view. As the complexity
of the problem increases, we trace the evolution of the algorithms from numerical
parameter setting schemes through thon using symbolic abstractions and then relations
between symbolic entities, and finally to complex symbolic descriptions which incorporate
explicit domain knowledge. The paper can be viewed two perspectives: as a bridge-
building activity, describing the approaches of two different research communities to the
same general task; it can also be viewed as an attempt, by using the classification task
as a concrete example, to give an intuitive account of how the information processing P
activity underlying thought necessarily needed to evolve into complex symbolic processes
in order to handle increasing complexity of problems and requirements for flexibility.

2. TRE CLASSIICATION TASK

1.1. E*ert Systems and the Ctssification Task

The ara of expert systems, though of recent origin, is already a well-established subarea
of Artificial Intelligence. The essential idea of the field is an attempt to capture in
computer programs, explicitly and in symbolic form, the knowledge and problem sohng
method of human experts in selected domains and tasks; in fact, because of the central
role of explicit domain knowledge, the field itself is often called knowledce-based systems. .
This is not an appropriate place to discuss the knowledge representation and problem
solving issues in the field of expert systems, many of which ae thriving and open
research imues. Them ae many expert tasks that have been successfully emulated by
these systems, while there ar an even larger number of things that human experts do
that am beyond the current state of the expert system technology. If one were to ex-
amine the intrinsic nature of the tasks of the current generation of expert systems, a

Io



surprising fact emerges: most of them solve variants of problems which are intrinsically
classificatory in nature. It is important to note that we are not claiming that the au-
thors of these programs recognized them as classification problems and used methods ap-
propriate to that task, but that, independent of how they were solved, the problems
solved by them have an intrinsically classificatory character.

Let us take some examples:

t. MYCIN 23i, in its diagnostic phase, has the task of classifying patient data
in an infectious agent hierarchy. I.e., the diagnostic task is identification of
the infectious agent class as specifically as possible.

2. PROSPECTOR 10! classifies a geological description as corresponding to one
or more mineral formation classes.

3. MDX [4, 51 explicitly views a significant portion of the diagnostic task as
classifying a complex description (the patient data) as an element in a disease
classification hierarchy (e.g., liver disease, in particular hepatitis).

4. SACON [2! classifies structural analysis problems into classes for each of
which a particular family of analysis methods will be appropriate.

The above is by no means to imply that all problems are classification problems or that
can be usefully converted into such problems. RI [17, e.g., performs a relatively simple
version of an object synthesis problem, i.e., a version of the design problem. RED

t131 Internist '211 and Dendral [31 are different systems all performing various versions
of assembly of composite hypothesis for abductive reasoning. In (6, 7, 81 we have given
taxonomies of such generic tasks for which expert systems can be designed and we iden-
tifred classification as one of the generic tasks. Recently Clancey 191 has made a similar
assessment of how several expert systems perform classificatory problem solving. Stick-
len, et al 251 discuss the control issues inherent in the task.

What is important to note from the above list is that classification seems to be a rather
ubiquitous problem solving process, and a number of real world problems including
medical diagnosis can be thought of as having a large classification component. Further,
classification has been one of the more tractable problems for the knowledge-based sys-

e. tem technology to handle at this point in its development.

.t. Classification in Pattern Recognition

There is another area of inquiry, which is now more than 20 years old, viz., pattern
recognition, which has also been intimately connected with problems of classification. In
fact, in the early days of the field the problem of recognition was formulated as a
problem of classification, in particular one of statistical classification of multidimensional
pattern vectors into one of a finite number of classes, each class characterized by some
kind of probability distribution. In fact what started out as a useful formulation prac-
tically got to be so dominant that there was a need for a paper such as that by Kanal

*. and Chandrasekaran [14! pointing out that classification is only one of the formulations
for the more general recognition problem. Even when newer techniques such as syntactic
techniques came into the field, the problem was still often formulated as a classification
problem, this time into grammatical categories.i

N_-

117 . ','~ ~ . " . " - . ", .. % % .,% - . ,+ ,- - ., . . . . . , . -



I

3 i.
3

.S. Clasiication in Biology

Taxonomic classification has long been a significant methodology in biology. Linnaeus's
classification scheme is very famous, and more recently, mathematical taxonomy has been
presed into service for providing better classification in this area [241 The more recent
coutroveries regarding evolutionary biology (the claddists vs traditional evolutionary
theorists) revolve around implications of various theories for classification.

2.4. Why this Ubiquity? The Computational Power of Clasiication

Classification seems to be a powerful human method of organization for comprehension
and action. This tendency is so strong that people often feel they have accomplished
something by merely naming something as a clus, even if they cannot do much about
it. Why is classification so powerful?

A simple computational explanation can be given for the importance of classification as
an information poesing strategy. One can think of the task of an intelligent agent as
performing actions on the world for certain goals. But often the correct action
knowledge is a function of the state of the wvorld. E.g., one can think of the general
problem facing the physician as having the following formal character. For each subset
of possible symptoms (the state of the patient), find an appropriate therapeutic action.
But in general the cardinality of the relevant states of the world is too large: e.g., the
total number of states of a patient is the cartesian product of the distinct states of each
of the state variables (symptoms, laboratory values, manifestations of all kinds). A table
relating the subset of state variables to action is bound to be too large for construction,
looking up, and modification. This problem is made more tractable, however, if action I
knowledge can be indexed, not by the states of the world, but by equivalence clases of
states of the wfd. Thus a physician's therapeutic knowledge is not indexed directly by
the detailed values of the patient state variables, but by diseases each of which can be
thought of as defining an equivalence class of patient state variables. The medical
problem solving can then be organized first as mapping from symptoms to disease
clasess (diagnosis as classification), and then from disease classes to therapeutic actions.
Since the number of equivalence classes is much smaller than the number of states, the
complexity of the mapping is now considerably reduced.

Thus: classification into categories provides a great computational advantage. Much of
human thinking is organised around classification, both in terms of creating u eful clas-
sifications (concept leaming) and using existing categories to perform classifications.

However, the proess of creating useful classifications (concept learning) is a much harder
proces than using a classification structure to do the actual classification. Thus in
medicine discovery of a disease (creation of a new class) is a relatively major event while
diagnosis is much more routine. In this paper we only deal with the process of assign-
ing an object to a clas in a classification structure.

S. TRE STATISTICAL CLASSIICATION PARADIGM

The typical model in this paradigm is one where the aim is to arrive at a classification
of a multidimensional vector (where each dimension is typically a numerical variable,
even though ordinals are some times used) representing an object of unknown classifica-
tion into one of a finite number of classes. Each dimension typically represents an
ttnute of the object that the system designer has had reason to believe carries useful I

information about class membership. Intuitively, one would try to choose attributes
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1 0 "such that they have the potential to distinguish between classes. When the number of
Isf dimensions is small, it is possible to design classification systems that outperform human

expert performance in that task domain. E.g., if it is desired to distinguish between dis-
eases DI and D2, and statistical evidence indicates that symptoms si, s2, ..sN carry use-
ful information for this discrimination, careful statistical data gathering is often possible
such that a discriminant function of the variables sl... sN can often be a very accurate
classifier. Human reasoning with the same variables may be less efficient in information

' extraction, and thus automatic procedures using the statistical model can be very power-
ful.

In this model, in spite of the enormous intrinsic interest of the mathematical problem of
designing and improving classification algorithms - virtually thousands of papers have
been written in the pattern classification literature on solutions to this problem -- Kanal
and Chandrasekaran [141 pointed out years ago that the real power often comes from
the careful choice of the variables themselves based on a good knowledge of the domain
rather than from the complexity of the separation algorithm.

What happens when the dimensionality of the vector gets to be very large, or the num-
ber of classes gets to be large? When the number of classes increases, in general, in or-

,'.p der to make more and more distinctions the number of measurements on the object, i.e.,
.',e the dimensionality of the pattern vector, also will need to grow rapidly. When the

numbers of classes increases, the complexity of the algorithm to make the discrimination
grows much more rapidly, and correspondingly the average performance, i.e., correct clas-
sification rate, deteriorates quite rapidly. Sensitivity problems begin to become quite
severe: i.e., the required precision of the parameters in the classification algorithm be-
comes impractically high. Opacity problems result: it becomes increasingly hard to make
any kind of statement about what attributes are playing what role in the recognition
process. These problems exist whether statistical classification algorithms are used, or
perceptron-like linear threshold devices are used. Szolovits and Pauker '261 discuss some
of the problems with the Bayesian approaches, and Minsky and Papert 181 the problems

P. with the latter.

4. ABSTRACTION BY INTERMEDIATE CONCEPTS

What is to be done when the number of classes is very large? Consider the following
pedagogically useful example: the design of recognition devices for automatic reading of
texts. Assume for the sake of discussion that the number of words in the language is
20,000, and we would like the words to be recognized. Consider solving the problem by
designing a discriminant function which directly maps a multidimensional vector into one
of 20,000 classes. One can sense that this is a pretty unworkable solution: the number
of measurements that would need to be made on the words and the complexity of the
decision algorithm will be too large to permit this solution in practice. Intuitively one
would think that recognizing characters first, and then based on this recognition recog-
nizing words would be computationally more attractive. Why is this a much more

• ". reasonable solution?

"" What is going on here is a two-fold strategy of symbolization and hierarchicahization. In-
stead of doing the classification by a direct discriminant function-like mapping, inter-

%mediate symbols are constructed, which are then used as attributes to a higher-level
classification process. (Note that this is not the same as hierarchical classificatton. which
if it were to be applied to this problem, will first involve classification of the words into
groups of similar-looking words, each class will be further subclassified, and so on. until
each word receives a classificatory status.) Symbols at each level are produced by a
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classificatory process using the symbols from the previous level as attributes. Each such
computational process is much more tractable.

4.1. Signature Tables

Consider another example: evaluation functions in chess. These functions usually yield a
number which is a measure of the "goodness" of the board. For most purposes, effec-
tive use of this information can be made if the goodness is classified into one of a small
number of categories. One of the first forms for the evaluation functions was a linear
polynomial of attributes of the board: both the attributes and their weights were chosen
in consultation with domain experts. Then in order to take into account interactions
between the variables in the evaluation function, higher order polynomials were later
proposed. This of course resulted in a fairly rapid increase in the complexity of the
function: if r-the order interactions were to be included and the number of attributes is
n, then the number of terms was of the order of n**r. Samuel's uignature tabues

[221 provided a solution which exemplifies the symbolization and hierarchicalization
ideas mentioned earlier. For the purposes of our discussion, Samuel's method can be
described as follows.

1. Identify groups of attributes such that on the basis of domain knowledge
the e is reason to believe that they contribute to an intermediate abstraction
that can be used to construct the final abstraction, in this case, a measure of "
the "goodnem" of the biard. (Typically the attributes in a group may have
some dependencies and interactions, in order to capture which, in the more
traditional evaluation functions, polynomial term were included.) In chese,
"defensibility of king" and "material advantage" may be such intermediate
concepts, each of which can be estimated by a subset of board attributes,
while the final decision about the goodness of a board configuration may be
made in terms these intermediate abstractions.

2. Find a method of claw fo'ng the desirability of theme intermediate concepts
into a small number of categories from the values of the attributes in each
group. (For the purpose of our discussion, the exact method is not
important- Samuel proposed a specific mechanimm for this. The essence of
his mechanism is a mapping from a multidimensional vector, each component
of which can only be in one of a smalo number of distinct values, to a sym- %:
bolic abstraction, which can also be in only one of a small number of distinct
valum. The mapping turns out to be a fairly simple one.)

3. The outputs of the cimifiers for each group can themelves be thought of as
qualitative attributes at the nex level of abstraction. These can be grouped
and abstracted into higher level concepts as necemary until the top-level con-
cept is a classification of the "goodnem" of the board in a qualitative way.

To repeat a point made earlier, by trading off the precision of numbers for the
simplicity and mbustns of a small number of symbolic statse., and combining it with
hierarchical abstractions, significant computational advantage is being gained. It also
points to the fact that often numbers ar too precise for the task at hand. Robust
symbolic abstractions of the appropriate kind can capture almost all of the relevant in-
formation

-"...
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5. SYNTACTIC OR STRUCTURAL APPROACHES

After about a decade of work within the statistical classification paradigm (the work on
the perceptron paradigm was going on in parallel in certain sections of the A[
community), Narasimhan 120i proposed what he called a syntactic approach to pattern
recognition. The idea was to describe classes of patterns, not in terms of probability
distributions in multidimensional spaces. nor in terms of hierarchic symbolic abstractions.
but in terms of relations between symbols, much as grammatical categories are described
in linguistic analysis. Most of the readership of this book will be familiar with the prin-
ciples behind and examples of syntactic methods for pattern recognition, so we forego a
description here. (By now there is a vast literature on the subject.) The following
point, however, can be noted: The ability to de.icribe a class in terms of relations is a
move towards descriptions as the basis for class characterization.

Note that the idea of syntactic pattern recognition is really a special case of the more
general notion of structural relations as the basis of class characterization. (In (i5! we
discuss the relationship of the structural paradigm to the statistical one.) Thus, even
when the idea of syntax is not appropriate - ai is very doubtful that the notion of a
picture grammar is as general for the domain of visual objects as seems from a purely
formal perspective - the notion of structural relations as the basis for characterizing
concepts and classes is a somewhat more general one.

With the introduction of syntactic/structural models for pattern recognition), the progres-
sion becomes:

numbers --> symbols -> relations.

The major research directions in pattern recognition for capturing structural relations in
general were formal, i.e., some sort of a mathematical system within which theorems
about relationships may be provable regarding the classification performance. In fact,
this was the major reason for the original emphasis on syntactic methods, since there
was a well-developed theory of formal grammars already available. In any case, the em-
phasis on formalisms led to two constraints: one, often an attempt was made to force-fit
available formalisms to the pattern recognition problem, generally with unsatisfactory
results; and two, because human classification performance was more heuristic in nature,
restricted formalisms could only capture the quality of human performance only fleet-
ingly.

If one is to use relations between symbolic attributes as the basis of class characteriza-
tion, why restrict oneself to syntactic relations? Why not bring to bear the full power,
to the extent possible or necessary, the semantics of the classes in forming class descrip-
tions? Asking this question prepares the way for the next step in the progression, the
Al/Knowledge-based paradigm:

numbers -> symbols -> relations -> complex symbolic descriptions.

These complex descriptions characterizing the classes are the relevant aspects of the

domain knowledge for the task.

6. AI/KNOWL.DGE-BASED REASONING: A NEW PARADIGM

It is not an exaggeration to say that the knowledge-based approach in general, and to

classification in particular, is a new paradigm in the sense that it emphasizes different
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issues, and pore them in a different language. E.g., instead of issues such as
"optimality" and "error rate," which figure in the classical pattern recognition approach.
the Al paradigm emphasizes the issues of "knowledge representation" and -control of
problem solving". These relate to how the domain knowledge in explicit symbolic form
is represented (i.e, what language is used to encode the knowledge), organized and
acessed, and how the knowledge is used to arrive at clmaificatory conclusions.

We have already used medical diagnosis as an example to illustrate some of the ideas in
this paper. In discussing the Al approach, the medical diagnosis example is particularly
useful, since a number of Al systems have been built in this domain, and also the com-
putational advantages of such an approach can be well motivated. We will briefly
describe a system called MDX [51 f121 which has been developed in our Laboratory over
the past several years. Our description will necessarily be brief, since our aim is to
point to the role of knowledge structures and to give a feeling for what characterizes the
Al approach.

6.1. T7e MDX System: Example of Knowledge-Bused Approach to Classification

The MDX system performs medical diagnosis by essentially viewing the task as one of
classifying a complex cam description as a n6de in a disease classification hierarchy. A
number of caveats need to be kept in mind:

1. Not all classification problems are necessarily solved as hierarchical classifica-
tion problems. There are other AI systems that perform classification, but
without using the hierarchical point of view: e.g., [iI.

2. In general multiple classification hierarchies may exist in domain. (E.g., in
medicine, "viral hepatitis" is a clamificatory concept in the "infectious
disease" hierarchy as well as in the "liver disease" portion of the hierarchy.)
The general problem involves coordinating among the classifications by the
different classification systems.

3. A particular case may not have a single classification, but instead have Me
several classifications simultaneously applicable. (E.g., a patient may have
both "cirrhosis" and "portal hypertension," and in addition, the two diseases
may be causally related. This sort of situation may also arise in other
domains in character recognition, the image may realy be two characters
touching each other, e.g., rather than one character.) The MDX framework
can deal with many of these complexities more or les well, but for the pur-
pose of this paper we will concentrate on the single classification situation.

The control problem hem can be stated as one that deas with what classificatory ."
hypothesis to consider at what point in problem solving. In general we would like to
use domain knowledge to consider only a subset of all the hypotheses for problem solv-
ing efficieacy, or we would like to consider some hypotheses which are more promising ,:
ahead of othem, ,

The MDX system is organised as a hierarchical collection of or "diagnostic concepts," ".,
each of which has diagnostic knowledge that helps it make a determination about the . ,
relevance of that hypothesis (at that level of abstraction) to the ce at hand. This
hierarchy of specialists mirrors the diagnostic classification hierarchy. The total diagnos-
tic knowledge is then distributed through the conceptual nodes of the hierarchy in a
specific manner to be discussed shortly. The problem-solving for this task will be per-
formed top down, i.e., the topomost concept will first get control of the cme, then con-
trol will pass to an appropriate successor concept, and so on. In the medical example. -

-S
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Internist

Liver Hert

Heat" itis Jaundice

Figure 1: Fragment of a hierarchy

a fragment of such a hierarchy might be as shown in Fig. 1. More general classificatory
concepts are higher in the structure, while more particular ones are lower in the hierar-
chy. It is as if INTERNIST first establishes that there is in fact a disease, then LIVER
establishes that the case at hand is a liver disease, while say HEART etc. reject the
cs as being not in their domain. After this level, JAUNDICE may establish itself and
so OR.

Each of the concepts in the classification hierarchy has "how-to" knowledge in it in the
form of a collection of diagnoatic rute. (This is only one possible method by which the
specialists can make the determination about their fit with the data. In simple cases,
statistical classification algorithms can be used. In DART 1111 the decision about the fit
of hypothesis to data is done by using theorem-proving techniques. In L19, we show
how the concepts can make their decisions based on a causal knowledge of the domain.
The point is that how the hypotheses are evaluated is somewhat independent of the flow
of control for the classificatory task as such, even though for complex problems, a rich
knowledge structure will be called for to make the decision about how well the
hypothesis matches the case at hand). These rules are of the form: <symptoms>
-> <concept in hierarchy>, e.g., "If high SGOT, add n units of evidence in favor of

cholestasis." Because of the fact that when a concept rules itself out from relevance to
a case, all its successors also get ruled out, large portions of the diagnostic knowledge
structure never get exercised. On the other hand, when a concept is properly invoked, a
small, highly relevant body of knowledge comes into play.

The problem-solving that goes on in such a struct ure is distributed. The problem-solving
regime that is implicit in the structure can be characterized as an establish-refine type.
That is, each concept first tries to establish or reject itself. If it succeeds in establishingfitself, the refinement process consists of seeing which of its successors can establish itself.
Each concept has several clusters of rules: confirmatory rules, exclusionary rules, and
perhaps some recommendation rules. The evidence for confirmation and exclusion can
be suitably weighted and combined to arrive at a conclusion to establish, reject or
suspend it. The last mentioned situation may arise if there is not sufficient data to
make a decision. Recommendation rules are further optimization devices to reduce the
work of the subconcepts. Further discussion of this type of rules is not necessary for
our current purpose.

The concepts in the hierarchy are clearly not a static collection of knowledge. They are
active in problem-solving. They also have knowledge only about establishing or rejecting
the relevance of that conceptual entity. Thus they may be termed "specialists." in par-
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titular, "diagnostic specialists." The entire collection of specialists engages in distributed 'problem-solving. :R

i

The MDX system is a complex system that has been tested on a number of real-world
cases with a high match between its conclusions and that of specialists. The number of
symptoms, signs, and laboratory values that it can handle is in the hundreds, and the
number of distinct hypotheses it has in its diagnostic hierarchy is also close to hundred.
Some of the laboratory results about images is in complex descriptive form. Hard prob-
ability numbers are nowhere used; what the specialists compute can be thought of am
qualitative probability values: "definitely present," "likely present."... *'definitely absent.'
This is the sort of problem for which a purely numerical mapping approach such as a
Bayesian one will have considerable computational problems, in addition to posing dif-
ficultis of knowledge acquisition. It is often quite difficult to acquire probability dis-
tributions of the type needed for the classification algorithms from physicians, at least
for problems of this degree of complexity, while the sort of knowledge MDX uses is
directly available from domain experts.

7. CONCLUDING REMARKS

It is by now a truism that significant aspects of thinking can be modeled as symbolic
information processing: creation and manipulation of complex symbolic structures bearing
knowledge of various of types. Artificial intelligence deals with such models couched in
explicitly computational terms. We have noted that classification seems to be an ubiqui-
tous method used by human thought processes, and pointed out that the reason for chat
is the significant computational advantages that arise from storing knowledge useful for
action by indexing it over equivalence clses ol the sttu of the world rather than over
the states of the world themselves.•N
We have taken the reader through a progression of approaches for classification:
numerical measures and formulae of various types, symbolic abstractions, hierarchical
symbol structures, structural relations between symbols, and finally to rich symbolic
knowledge structures. Each stage in the progression gave more power in controlling the
computational complexity by matching the structure of the classifier to the complex
structure of the task. At the level of knowledge, the power comes from task-specific
control reimes controlling accm to appropriate chunk. of knowledie. We motivated the
discumion by using medical diagnosis as an example in various places, but the ideas are
mor generally applicable.

The discussion in this paper can be viewed as a bridge-building activity between two
reseeaeh pamadignms: pattern recognition and artificial intelligence. Clauification has been
a major concern in the former, and an important task performed by many systems in
the laner and thus the task provides a good place to understand the distinctions be-
twen the two research paradigms. For well-constrained classification problems with
rlie smal number of categories, the statistical and other numerical algorithms con-
sidered in the field of pattern recognition can provide powerful classifiers which often
outperform human experts by extracting the last trae of information that the more dis-
crate human symboik processes can only approximate. On the other hand for complex
problems involving many variables and classes the knowledge-based approach trades off
the optimality of the bet algorithms in pattern recognition for greater computational
tractability and better matching with human knowledge in the domain.

Many of the points made in this paper transcend the particular task of classification. In
that senm, this paper can be thought of as an attempt to point to the emergence of the

77-I



10

I

need and power of symbolic structures for control and prediction. Cybernetics showed the
power and usefulness of the concepts of feedback and stability in understanding many
control and communication problems. But in classical control theory, numbers and func-
tions hold sway. Learning and control in this framework involves parameter modification
and signal propagation. The space over which parametric changes and numerical signals
can provide control is limited. Symbolic models of the world provide greater leverage for
change and control and still keep computational costs within manageable bounds. Thus in
biological information processing, symbolization seems to have occurred very early in
evolution: see [161 for an account of how early visual processing of the frog is symbolic
in nature. Once symbols were available as the language in which to perform information
processing, thought eventually evolved into more and more complex symbol structures.

F% Thus the points in this paper can be viewed as an intuitive account of the emergence
and power of symbolic structures for complex information processing activities.

Our approach within artificial intelligence has been to identify other generic t44ka similar
to classification, but with similar characteristic of being a building block for complex in-
formation processing activities. In [81 we give an account of the latest repertoire of such
generic tasks we have identified.
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A Critique of Qualitative Simulation
from a Consolidation Viewpoint

Tom Bylander

Laboratory for Artificial Intelligence
Department of Computer and Information Science

The Ohio State University
Columbus, Ohio 43210 USA

qualitative reasoning is to achieve predictive and
Abstract explanatory power similar to that of quantitative and

analytical models while avoiding the need for precise

To understand commonsense reasoning, we need to discover formulations of problems and computationally-intensive
what kinds of problems a commonsense reasoner should be methods. So in the situation where a flame is under a
able to solve, what the reasoner needs to have in order to pan of water, one can predict that the water will probably
solve thoe problems, and the relationships among the heat up and boil. Even though only rough details of this
various kinds of problem solving abilities. We examine situation have been described, conclusions about likely
three methods for performing qualitative reasoning about behavior can still be reached.
the behavior of physical situations. Two of the methods
perform qualitative simulation, which determines the We will be concerned with qualitative methods for
behavior of a situation by a qualitative version of inferring behavior in designed situations. Our long-term
simulation methods. The other method is called interest is the inference of behavior in general physical
consolidation, whkh derives the behavior of a situation by situations, but to simplify the problem somewhat, we will
composing the behavior of the situation's components. We restrict our focus to artifacts (devices) and situations which
show that qualitative simulation and consolidation work on are arranged to achieve (or not quite achieve) interesting
different problems of qualitative reasoning, and that their behavior. The intent is to first discover theories which
differences and similarities lead to several implications handle simpler situations, later extending successful theories
about their role in qualitative reasoning. to more general situations.

1. Introduction One approach to this problem is qualitative simulation l

A recurring criticism of knowledge-based systems, expert (abbreviated QS from now on). Like simulation in general, .

systems in particular, is that their knowledge is too a description of the situation is used to determine the
"shallow." The criticism is directed at several symptoms relevant parameters (or quantities) and constraints of the

which arise when the decisions made by these systems am situation, a simulation is performed, and the results are
based on rules of association instead of being based on a transformed into interpretations of the overall behavior.
model of the domain. For example in MYCIN, "head Unlike quantitative simulation, specific values are not

ueigned to quantities, but only their ordinal relationshipin ju ry " is u se d a s e v id e n c e fo r " E . C o l ca s in gl t o i p r a t c o s a t r ot e u n i i e.rt t d
meningitis," but MYCIN has no model of infectious to important constants or other quantities are stated. , .
diseases which supports this association, vis., a head injury Also, constraints are qualitatively stated. e.g.,
exposes the meninges to bacteria in the environment, proportionality may be asserted, but not a specific
E. Coi is a common bacterium in the environment, and function. QS then tracks the situation from one
E. Coli in the meninges will often cause meningitis. qualitative state to another by predicting the changes in
Without this model, MYCIN is unable to explain the the ordinal relationships of the quantities.
causal relationships between data and hypotheses; is unable
to block associations when they are not appropriate, e.g., if We have proposed a different approach called
the head injury *occurred in a sterile environment; and i consolidation [11, which is a type of qualitative analysis.
unable to give weight to hypotheses in slightly different, The behavior of the situation is discovered by inferring the
but similar circumstances, e.g., if other pathways to the behavior of selected substructures of the situation from the

Smeninges are available to E. Coll. Examples like these a behavior and structure of their constituents. Successive ".
not just endemic to MYCIN, but occur whenever application of this process on increasingly larger
associational knowledge is not supported by domain substructures results in inferring the overall behavior of the
models" situation.

The reason why association-based systems continue to It would appear, then, that QS and consolidation are
abound i because robust models for domains as rival methods for the same problem. We shall &how.
complicated as MYCLN's do not yet exist. One area of Al though, that they apply to two different problems of

esarch which is directed towards this goal is qtiitali behavior inference. The commonalities of the two
reommeno, the ability to make decisions and solve problems problems leads to interesting implications about the role of
bed an qualitative data and models. The l of consolidation within a complete theory of reasoning about

Se e e.. . .. .
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I.

behavior. Most of the implications described here concern 2.1. The Confluence Approach of de Kicer &
certain difficulties in QS, and how consolidation can be Brown
used to handle them. An additional implication pertains This approach models behavior using confluences.
to the behavior representation that is used if both QS and Roughly, confluences are qualitative equations involving
consolidation are integrated within a commonsense quantities and their derivatives. For example, the
reasoner. following confluence:

Our discussion will be divided into three parts. First, X + Y = 0
we will summarize two quite different approaches to QS,
namely those of Forbus :4 and de Kleer and Brown 131, indicates a constraint on the signs of the quantities X and
and also outline our consolidation approach. Second, we Y. For example, if X is positive, then Y cannot be positive
will identify the different problems that QS and or zero because then X + Y would be positive, thus Y
consolidation attempt to solve. Third, we will examine the must be negative. Confluences may also be applied to
implications that result from the problems that they work derivatives of quantities (8X denotes the derivative of X),
on and the methods that are proposed for solving them. so one can specify how quantities move up or down in

relation to other quantities. Confluences may refer to any

2. Different Approaches to Inferring number of quantities or derivatives, and while it is
Behavior preferred that confluences use only simple addition or:1: Beaviorsubtraction, other operations are allowed.

In addition to summarizing the basic ideas and methods
of each approach, we will show how they apply to the No agent can be expected to have the set of confluences

'- example situation pictured in figure 1. In this situation, a for each situation that it will experience, so there is a
flame is under a pan which holds some water. Both the need to describe the structure of a situation, and the
flame and the pan are located in a room. behavior of each part of the structure. For de Kleer and

... Brown, the elements of a situation map into disjoint
components, which are related to one another via
connections. Each component is modeled by a set of

room quantities, and a. set of qualitative states. 'Each state
specifies when it is active, and a set of confluences which
hold when the component is in that state, i.e., the *a%
the component behaves in that qualitative state.
Confluences and conditions on qualitative states only

Mreference the components' quantities.

flame.----- 41The connections indicate where material is permitted to
flow from one component to another. The components of
a connection specify which of their quantities are associated
with the connection, and the connections are used to
determine additional confluences which constrain these
quantities. These confluences are used to enforce
qualitative versions of general conservation laws, and

provide the only means for interaction between

Figure 1: Example Situation components.

W-aa The QS is done by a method called envisionment, which
We will talk a great deal about quantities, so a is a combination of constraint propagation and constraint

description of them is in order. Quantities are used to satisfaction. It is important to note two aspects of
represent the real-valued parameters of the QS. So at a envisionment, one concerning the prediction of a temporal
specific point of time in a specific situation, a quantity sequence of events, and the other with the production of a
within that situation has a particular real value. For causal explanation for the values of quantities at each
qualitative reasoning, though, always assigning a quantity moment of time. For predicting the sequence of events,

p an actual number is forbidden. Instead important numbers just constraint satisfaction will do, i.e.. begin by
and ranges of numbers are identified as relevant to the determining values for all the quantities which satisfy the
quantity (Forbus calls these sets of numbers and ranges confluences, determine which quantity or quantities will
quantity spaces), and the quantity's relationship within the next deviate from its current qualitative value, and repeat,

.01. quantity space is its "value." In addition, the quantity's solving the confluences (which may have changed because
direction of change (up, constant, or down), i.e., its of a change in qualitative state) for the new values.*
qualitative "derivative," is maintained for the purposes of
the QS, in order to anticipate what its next value will be. Envisionment, however, does not simply satisfy the

confluences. Instead, an input disturbance is selected, and
Each of the following descriptions is necessarily too brief its effects are propagated from component to component.

to completely describe each approach, so much If there is not enough information to determine all the
simplification has taken place. However, they should be
accurate enough for the purposes of this paper.

This is highly simplified since there can be many
posible solutions, and many possible "next deviations."
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quantities' values, then an assumption about the value of a moment of time, the pan's temperature will be higher than
quantity is made based on heuristics (which de Kleer and the room's, thus heat will flow from the pan to the room.
Brown have derived from how people explain behavior). It is now unclear how long the pan's temperature will"
and the propagation continues. The path of the continue to increase, and it appears possible that the pan's
propagation and assumptions is used as a causal temperature may start to decrease (since Q V f is negative,
explanation of the quantities' values, and Qpr positive, any sign of n3T"  satisfies the

confluence.) Adding more confluences can resolve this
For figure 1, the flame, the pan, and the room would be latter difficulty. If and when aT becomes zero, adding

considered the components, and would be connected to one aQ, = i - n' to the connections' confluences will
another. The water in the pan is not modeled directly, predict that both O3Qp-f and OQp-r become zero. Now
but by appropriate quantities associated with the behavior adding *82Tp + CQyPf NQ ,r = 0 to the pan's
description of the pan. Heat and temperature are also not confluences will predict that the pan's temperature will
directly modeled, but each component (in a more complete stabilize.
model than the one below) would have appropriate heat
quantities. For simplification, we will not model boiling or 2.2. The Qualitative Process Approach of Forbus
the water vapor that escapes from the pan. Forbus introduces a notion called qualitative process to

account for change and explain why it occurs. Qualitative
* Figure 2 is a simple model of this situation. The flame processes (QP) perform a similar function as confluences,

and room have ideal models of unchanging temperatures i.e., they both specify behavior and interaction, but the
(T 1  = 0). The temperature of the pan varies with the way QPs are defined and applied is very different. First,
amount of heat flow (represented by the pan's confluence). we need to discuss some of the things that QPs refer to.
The heat changes with respect to how much heat flows
into (or out of) the pan. Each connection specifies that Situations are made up of objects, predicates on objects,
the amount that flows from one component is the opposite and relationships between them. Forbus does not provide
of the amount that flows into the other component. The a specific set of relationships, leaving it to the implementor
amount of the flow has the same sign as the difference in to determine what relationships are relevant to the
temperature. situation. Additional "individuals" and relationships may

be asserted by individual views, which consists of a set of

flame- quantities: Tf (temperature), conditions, and the relationships 'which follow from them.

P (heat flow from flame to pan) An individual view is used .to "view" a group of objects as

Q (heat flow from flame to room) Contained-Liquid individual view. As before, objects and

confluences: 0 i individuals are modeled by a met of quantities.

pan - quantities: T, Q r The only kind of behavior description which may be
confluences: p Qpf.- qp-r = 0 directly associated with an individual is qualitativeproportionality between two of its quantities. This simply

room- quantities: T r, Qr-r Qr-p indicates that a change in one quantity will affect the

confluences: orr = 0 value of the other quantity. The "direction" of the
proportionality is important, indicating which variable is

each connection - confluences: Q, + Q2 0 the dependent variable of the relationship.

Q, = T, T 2  QPs are the mechanism that determines when changes

occur. Unlike confluences, a QP is not part of a

Figure 2: Example Model Using Confluences individual's behavioral description, but is a general rule
which indicates the conditions which cause a quantity or

Suppose that the pan and the room initially have the quantities to change in a certain direction. The conditions

same temperature, which is lower than the flame's may refer to any number of individuals. Neither a QP

temperature. Taking the temperature of the flame as the nor a qualitative proportionality guarantees that a quantity

input disturbance (we can imagine that it has been just will actually change in a certain direction since there may

turned on), from the confluences of the connections, heat be several active QPs or proportionalities which affect the

movement from the flame to the room and pan can be same quantity. The actual change in a quantity will be

inferred (e.g., T f- ' is positive, causing Qf_, to be the sum of the effects on it.
positive, and Qpf to to negative). Since the room and The QS works as follows: ind all the individual vie,
the pan are the same temperature, there is no heat flow and Q s w hich a m act i (whos e ndi i dar tre)
between them (T _ - T r is zero, causing Q-r and Qr, t and QPs which are active (whose conditions are true);
be zero). Then from the pan's second confluence, the determine the effects inferred by the QPs and indirectly by
pan's temperature must be increasing (Qp-t is negative, any proportionalities; determine what the change(s) will be,

and Qp-r is zero, making nTr positive). At the next viz., a quantity or derivative changes to a new value, a a
new QP becomes active, or a previous QP becomes
inactive; and repeat.

"This last confluence is not quite accurate since if both
temperatures are positive, nothing can be concluded about
hea; flow, i.e., positive minus positive is indefinite. We Since many QPs can affect a single quantity, its
will mume that it means, e.g., that Q, is positive when direction of change may be ambiguous.
T 1  T 2 in positive
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For figure 1, the primary QP will be the heat-flow decreasing effect), or even decrease at a later point in
process displayed in figure 3. The Individuals, time. To avoid the latter problem, the heat-flow process
Preconditions, and QuantityConditions sections specif) the needs to be modified so that the flow-rate is proportional
conditions for a heat-flow process to be active. A heat- to the temperature difference, and that the flow rate
flow process requires two objects which can store heat, and approaches zero as the. temperature difference approaches
an object called a heat-path which connects them. It also zero. With this modification, if and when the derivative of
requires that the path be Heat-Aligned (meaning that there the water's temperature becomes zero, then the derivatives
is nothing blocking the flow of heat along that path), and of all the flow-rates will become zero, and the situation
that the temperature of "src" ("A" is a function which will stabilize.'
refers to the amount of a quantity) be greater than the
temperature of "dst". The Relations section specifies 2.3. The Consolidation Approach
additional relations that hold while the process is active. The consolidation approach uses a structural model
In this process, a quantity called "flow-rate" is created similar to de Kleer and Brown's, adding an additional
which is greater than zero. The Influences section specifies structural relationship called containment. Things like
the effects on quantities. In this case, there will be a water and heat are then modeled as substances which are
negative effect on the amount of src's heat, and a positive contained by the components of the situation, or perhaps
effect on dst's heat. The amount of this effect is the other substances, e.g., water contains heat.
amount of flow-rate.

Behavior is modeled by specifying the actions (themselves
process heat-flow called behaviors) that are performed on substances.

Possible actions include:

Individuals: * Allow. Permits movement of a substance from
src an object, Has-Quantity(src, heat) one place to ano.hec
dst an object, Has-Quantity(dst, heat)
path a heat-path, Heat-Connection(path, src, dst) Pump. Attempts t.) move a substance through

a path.

Preconditions:
Heat-Aligned(path) Expel. Attempts to move a substance from (or

- to) a container.
QuantityConditions:

A~temperature(src) > Altemperature(dst)' Move. A substance moves from one place to
another.

Relations:
Let flow-rate be a quantity Create. Creates a substance within a container.

. . A'flowv-rate' > ZERO- > ZERDestroy. Destroys a substance within a
Influences: container.

1-(heat(src), Aflow-rate) Each action specifies the kind of substance that is affected,
tdt)Afow-rate and the location(s) (containers and connections) where it

takes place. Each behavior may have a number of
Figure 3: The Heat-Flow Qualitative Process parameters or quantities whose values may be real, but is

not restricted to be so, e.g., the "rate" of a move signal
behavior might be "on" or ntity may refer toThe situation in figure 1 can be modeled with the flame, pehavior of beh or off." A quant inica to

the room, the pan, and the water as objects with heat- parameters of behaviors that need be inferred, indicatingpath bewee th flae, oom an pan Th flme, that the behavior is dependent on other behaviors, e.g., the
paths between the flame, room, and pan. The flame, amount of the create light behavior of a light bulb is
room, and water each has quantities of heat and

dependent on the rate of a to-be-inferred move electricity"', temperature. Again, assume that the temperature of the behavior through the light bulb.

room and the flame remains constant, the flame is hotter
• than the room, and the room and water are initially thetsane theromerature.d the m p atere iitiallyate s A component is modeled by specifying its structure, i.e.,

same temperature. Also, the temperature of the water is its containers and potential connections, and the behaviors
• . proportional to the amount of its heat. We will assumeproorthat heat the tont fitshe a inferred omte which take place within that structure (loosely termed thethat heat-paths to the w ater are inferred from the c m o e t s b h v o s . A c m o e t m y h v e e a, Contained-Liquid individual view, or something similar, component's behaviors). A component may have several

n Lbehatoral states, each of which are associated with a
Initially, two heat-flow processes are active, from the different set of behaviors. Each state indicates the

flame to the room and from the flame to the water. The condition (a predicate on behaviors) in which the state is

amount of the water's heat will increase, which because of active.* ilices. Snethe tmatueo the water an
the proportionality, implies that the water's temperatu Consolidation gets its name from the processing that this

room are now different, another heat-flow process from the
water to the room becomes active. Now the same

% problems as before reappear. It is questionable how long
the water's temperature will continue to increase (one heat- It is not clear whether Forbus's system can currently
flow process has an increasing effect, and the other has a perform this analysis, but it is easy to imagine that it can

be modified to do so.
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approach proposes. The major processing sequence is to are move heat behaviors between all of the heat containers.

instantiate a composite component consisting of a selected and their rates depend on the temperature differences
subset of components (currently restricted to just two between them.
components), and then to infer the behavior of the
composite from the behavior of the components. 3. Differences in Information Processing
Performing consolidation on increasingly larger composite Consolidati":,, unlike either QS approach, does not
components results in inferring the behavior of the whole produce a sequence of events as its output, yet all three
situation. As a byproduct, a hierarchical behavior approaches claim to derive the behavior of a situation.
structure is produced which explains how the overall Each approach starts from similar models of the situation,
behavior is caused by the components' behavior, and makes inferences about behavior, so how can the final

result, conclusions about the situation's behavior, be
Behaviors of composite components are hypothesized different? The not-so-earthshattering answer is that

based on causal patterns of behavior and structure. Their consolidation provides a different sort of conclusion about
existence is confirmed, and their parameters are determined behavior then QS does. QS and consolidation solve two
using knowledge about the physics of the substances being different problems.
acted upon. Roughly then, causal patterns are used to
infer behaviors which arise from combinations of other 3.1. Two Types of Behavior
behaviors, and once 'a pattern is matched, substance- Part of the confusion comes from the fact that
specific knowledge is called upon to fill in the details. "behavior" is an ambiguous word, and that QS and
Figure 4 illustrates several causal patterns. For example, consolidation pinpoint two of its meanings. The behavior
the serial allow pattern states that if two allow behaviors that QS outputs is a temporal sequence of events or states
are in series, then infer an allow behavior over the whole that are predicted to occur in the physical situation.
path. Starting from some knowledge about initial state of the

situation, QS attempts to determine a qualitatively

Serial Allow: Allow S from A to B complete description of the quantities in the initial state.

Allow S from B to C Using this description, it predicts what the next. change

===> Allow S from A to C (quantities or derivatives changing qualitative value) will
be, and determines what the next state will be based on

Serial Pump: Pump S from A to B the previous state and the predicted change. By repeating

Pump S from B to C this proces, QS predicts the sequences of events that the

-- => Pump S from A to C situation goes though!

Expel Move: Expel S from A Consolidation outputs what we will call the potential

Expel S from B behavior of the situation. For example, the move heat

Allow S from A t B behavior between the flame and the pan does not
Move S from A to B specifically assert when or if heat moves, but that the

situation is ripe for heat movement to occur, and that the

rate of heat movement can be calculated if some other
Figure 4: Example Causal Patterns facts are known, in this case, the temperatures of the

flame and pan. The behavior is an indication of what .
potentially may happen, and points to other information

The. components of" the figure 1 would be the flame, pan, on which this potential is dependent.
and room, which would all be connected to one another.
The pan contains water which contains heat. Both the 3.2. The information Processing Tasks
flame and the room contain heat. Each component has an The information procesing task of a problem is a
expel heat behavior whose amount quantity corresponds to functional specification of the problem in information
the component's temperature. Each component also has terms, i.e., the information that the input and output
allow heat behaviors from its heat container to its represent. The previous paragraphs have already identified
connections, and vice versa. The amount of the pan's what the outputs of QS and consolidation are, so here we
expel heat behavior is dependent on the amount of heat in will attempt to characterize the inputs.
the water. The amounts of the other two expel heat
behaviors are constant. All the approaches require a structural model of the *.•

situation as part of their input. The careful reader will
Suppose that the pan and flame are initially considered have noticed that all the approaches also require some m

for consolidation. Using the serial allow causal pattern, an description of how the elements of a situation will behave.
allow heat behavior between the pan and the flame is In de Kleer and Brown's approach, each element
inferred from their individual allow heat behaviors. Using (component and connection) has a behavioral model. In
the expel move causal pattern, a move heat behavior Forbus's approach, each element is modeled by a set of
between the flame and the pan is inferred from the two quantities and relations and the interactions among
expel heat behaviors and the just inferred allow heat
behavior. The rate of the move heat behavior corresponds
to the temperature difference between the flame and pan,
i.e., the difference in the amounts of the expel heat .
behaviors. Combining the flame-pan composite with the It must be remembered that the sequence of events is a , %,

room results in similar use of the serial allow and expel qualitative description, so it represents a wide range of "
move patterns. The result of consolidation is that there actual sequences. Still, the form of the output is temporal

and event-baed.

%U



elements are described by QPs. In the consolidation 4. Implications
approach, each element has a behavioral model, but some Most of the implications in this section identify areas
general knowledge about the behavior of substances is kept where consolidation can play an important role in
elsewhere. reasoning about behavior. Since consolidation takes the

same input as QS, it directly competes with QS for certain
We have already noted that "behavior" is an ambiguous kinds of reasoning problems. tlo%%eer, to determine what

word with at least two meanings. Does each approach the sequence of events are. QS of somne kind is definitely
require a new meaning of behavior to describe its input? needed, but as argued below, consolidation can still be

. Our answer is that the. input behavior (the behavioral used to simplify the work of QS.
5. description that is input) of each approach corresponds to.

the sense of potential behavior as described above. 4.1. Initial Conditions
Suppose that in figure 1, no initial conditions (initial

Our argument is as follows. None of the approaches values of quantities) were known, but some statement
model input behavior as a sequence of events, so that about the situation's behavior is still desired. Without
meaning of behavior doesn't apply. The input and output initial conditions, QS is unable to start. The best that
behavior in the consolidation approach are couched in the could be done would be to enumerate all the possible

? same representation language, so the input behavior is of initial conditions and perform QS on each possibility. An
the same type as the output. For the QS approaches, the enumeration of initial states might be small in this simple
quantities of the situation's elements and their case, but in more complex situations, there would be many
corresponding quantity spaces specify what may potentially possible initial states.

* happen. Dependencies between quantities are represented
by confluences and qualitative states in de Kleer and Consolidation can proceed without assuming any initial
Brown's approach, and by proportionalities and QPs in conditions, and in fact, the processing described earlier did
Forbus's approach. not do so. If we examine more closely what the final

result looked like (figure 5), it is not hard to see why this
Thus the information processing task of QS is: is the case. Each quantity is defined not in terms of

structure of situation + potential behavior of elements specific values at specific moments of time, but in terms of
"s n o ehow it is dependent on other quantities. Thus if the pan• ., ==>sequence of events

* . happened to be hotter than the flame, then the rate of
" For consolidation, the information processing task is: heat flow from the flame to the pan would be negative,

* indicating that heat would flow from the pan to the flame.
structure of situation + potential behavior of elements Figure 5 is a condensed representation of potential

==> potential behavior of situation behavior which can be directly used to answer questions

3.3. Understanding Physical Behavior and for other purposes, including QS.

What does it mean to understand the behavior of a
situation? The two tasks have different views, and would ratelmove heat from flame to pan
appear to argue against each other as follows. The QS - proportional( amount expel heat from flame'
task would say that understanding behavior means being - amountlexpel heat from pan')able to determine teprlrelations between events.- A

al teenmodel of behavior is useles unless it can be used to ratelmove heat from flame to room:
predict or explain what happens. proportional( amountlexpel heat from flame!

- amount'Lexpel heat from room')
The consolidation task would grant that determining the

events is important, but would note that QS works rate[move heat from pan to room
because the elements of a situation are well understood, proportional( amountfexpel heat from pan!
i.e., QS is given a model of their potential behavior. - amountexpel heat from room!)

V. x However, QS doesn't provide a true understanding of the
situation because it doesn't produce a like model of the amount[expel heat from pan]
situation's potential behavior. = proportional( amountrheat within pan.)

Both sides of this debate miss a plausible compromise. amount[expel heat from flamel = constant
Neither task represents a complete understanding of
physical behavior, e.g., neither task takes on the problem amountexpel heat from room' = constant

-',0. of designing devices. Understanding, then, does not consist
of being able to solve a single information processing task,
but in applying a range of problem solving abilities to Figure 5: Results of Consolidation

complex problems. Both QS and consolidation can be
viewed as different modalities of understanding behavior. 4.2. Open Systems
For some problems, QS will be the primary modality, A similar problem for QS is deriving the behavior of
while in others, consolidation will be, while still yet in situations which are open systems, i.e., there is interaction
others, both QS and consolidation will be secondary, between the situation and the outside world. Without
perhaps not even needed at all. knowledge of what these interactions are. the value of each

quantity that can be affected becomes indeterminable.
Enumeration of all conceivable outside interactions is not,
in general, a feasible solution since the number, kind, and

n
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order of interactions can vary greatly. However, the on their representations, while Sembugamoorthy and
ability to reason about open systems seems to be necessary Chandrasekaran generate a diagnostic system from theirs),
for understanding behavior since most situations that an they have the common feature of hierarchical
agent could be expected to encounter are open systems, representation of structure and behavior. Consolidation is
and puts of situations are by definition open systems. potentially applicable for generating, explaining, and

verifying behavioral descriptions at each level of the .
By providing a condensed representation of potential hierarchy. Since qualitative simulation is not suited to

behavior, consolidation gives a solution to describing the hierarchical descriptions, it is hard to see how it can
behavior of open systems.. If we changed the model of the applied.
room in our example so its temperature could fluctuate,
and it had a potential "heat connection" to the outside, The behavioral structure that consolidation produces
the result of consolidation would not be fundamentally could also be used for diagnostic reasoning. There are two
changed. The only difference is that the room could gain possibilities. The first is if an inferred behavior does not
or lose heat through other interactions. Heat will move occur when predicted. In this case, there must be some
among the room, flame, and pan in pretty much the same change in what was supposed to cause the behavior to
way. occur. The second, more difficult case, is if some some

behavior occurs when it is not predicted. Since this
4.3. Causal Explanation behavior must have been caused, every causal pattern

Two types of causal explanation correspond to the two which can imply this behavior becomes a potential
types of behavior defined earlier. QS emphasizes the hypothesis. The possible ways that this pattern can be
causality of temporality and propagation, i.e., the current satisfied are subhypotheses. For example, if substantial
state of the situation leads to the next, and the value of heat is unexpectedly moving from one place to another,
one quantity changes (via some confluence or QP) the one possibility is that the expel move pattern was satisfied.
value of another quantity. Consolidation emphasizes the This pattern (with knowledge about heat) requires that the
causality of composition, i.e., the behavior of a groap of two places have different temperatures, and that there is
components arises from the behavior and structure of the some path between them along which heat can flow. ri
individual components. Another debate like the device Different possible heat paths constitute different
.understanding debate could be promulgated at this point subhypotheses. This kind of reasoning could also serve as
with pr6bably the same result. Neither type of causality is the basis for learning how things behave.
necemarily superior to the other, but their usefulness
depends on the particular problem to be solved. It is 4.6. Representation
worthwhile to note that them is obvious causality in Both consolidation and QS have the same kind of input,
situations with unknown initial conditions and in open so representations of potential behavior should be amenable
systems (consider two batteries connected in series), to both kinds of problem solving. From the consolidation
Consolidation can be used to point out this aspect of point of view, representations should facilitate the
causality. composibility of behaviors. The representations of the QS

approaches do not have this property. ",

4.4. The Complexity of Qualitative Simulation aop
QS is a global reasoning process. To perform the In de Kleer and Brown's representation, consolidation

simulation for a particular moment in time and to check if would need to derive the confluences and quantities of
it has been done consistently, all the elements of the composite components from the confluences and quantities
situation must be taken into account. For example, the of individual components. Simply appending the models of
derivative of every quantity must be examined to update the confluences and their connections together into one
the quantities' values. This is true no matter the number description doesn't provide any additional information at
of quantities and confluences (or active QPs) the situation all and would eventually make composite components too
model has. The nature of QS prevents a hierarchical complex for comprehension, so thes confluences need to be
breakdown since any part of a situation is very likely to simplified. Unfortunately, equation operations like
be an open system, and also because the information substitution do not apply to confluences. For example, the
proceming task of QS is not recursive. The output is not following deduction is incorrect for confluences.
the same kind of information as the input.

W=Y+Z and X.=Y+Z ==> W=X
Integrating consolidation with QS would help alleviate If Y is neative and Z is positive, W and X can have

this difficulty. Consolidation can be used to determine s different signs without any contradiction, therefore W = X
potential behavior description of the situation or disjoint does not follow. This inability to simplify conf uences a
prts of it, and QS can then be applied to the reduced would make it extremely difficult to use consolidation on
situation. In other words, even if a sequence of events t
the desired output, consolidation can be used to reduce t this representation.
apparent complexity of QS. The initial difficulty for consolidation with respect to

4.5. Diagnosis Forbus's representation is that composing behaviors doesn't
The introduction suggested that robust domain models make any sense. Individuals do not have behaviors;

would ead to better diagnostic reasoning. Some recent Instead, QPs specify all direct effects that take place. The
research is based on diagnosing from a representation of alternative is to specify composite components so that QPs
the structure and function of the domain 'S, 2, 61. While will correctly apply to them, i.e., giving composite
thi reserch varies on a number of detils (e.g., both components the right quantities and relationships. Doingthis re sa vai 'yes erofor da eiseg., boted this will require something isomorphic to the causal
Gensereth's and Davis's systems perform diagnosis based patterns and the substance knowledge that consolidation
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currently uses. For example, to derive the voltage perform qualitative reasoning about physical behavior. Wc
quantity for two batteries in series, we need to know that have shown that one of these methods, consolidation,
the two batteries will have its own voltage quantity (a solves a different information processing task than the
pump electricity behavior is caused by two pump other two methods, which both perform qualitative
electricity behaviors in serial), and that in this kind of simulation. Thus consolidation cannot directly substitute
configuration, voltage is additive (the electrical knowledge for qualitative simulation. However, all the methods
that is invoked when the serial pump pattern is satisfied). accept the same kind of input, and their output is about
So Forbus's representation has no special advantages, and behavior, albeit different aspects of behavior. It is possible
would actually obscure the underlying regularity (the serial that this difference is uninteresting, e.g., it might be that
pump causal pattern). Another difficulty is when a wherever consolidation can be used, qualitative simulation
process occurs inside the composite component, e.g.. heat can be used to achieve the same effect. Therefore to
moves within the flame-pan composite, understand the role of consolidation and the relationships

between these tasks, we have shown where consolidation
4.7. Caveats play a major role in qualitative reasoning.

Currently, consolidation is not able to model all the
phenomena that the QS approaches are able to. Alo,
there may be certain kinds of situations in which Acknowledgments

S', consolidation would not work very well.
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that is more complex than the connection and containment Josephson, Jon Sticklen, and Mike Tanner for their
variety. For example, he can model, to a limited extent, discussions, comments, and encouragement. This research
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• 5. Conclusion
In the previous section, we have stressed the merits of

S€ consolidation in comparison to qualitative simulation. To
S.,, understand what we wanted to accomplish by this, the full

* context of the discussion must be considered. We have
carefully, although briefly, summarised three methods that
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We propoe a alternatve approach that is a type of
Abstract qualitativ analysis. The behavior of the davice is diocoveed by

Is Paer we wish to mak the cotibto to Nav anferming the behavior of selected substructure. from the behavior
Physcs n th cosentof eusoiagabou deices (1 W. A" strucdure of Thi coponents. Succesefu application of this

Phsc in h onn of resegabt qua icie s o (1) we p- ainringl large substructures results in inferring the
ices s gimittion of cumentf qulttv siuatdion behvir atthe1 Thin approach, called coasaimieht, has a

doe behvio an pans o te nd for addition p ~i causal analyis of behavior, and coamusency of -V- ain
(2) We introduce a nem approach so deriving the behavior of n hr abeacmitsouonote*
device. called consolidation. Is th" approach, the behavior of isirace-f-eh.,o h 1 ut whom it can applied, we
devisce Ws derived fhem the behavior of its components by inhrn bIev ha " iti a better altearseaiv for analyzing sad explaining
the behavior of selected subsucture. of the device. (3) we behavioir We wokh to emphase at this poiat that an
preen a ontology of behavior and struecture which ac well- ip eatoatssaprch urnlyaprge.h
suited to the conslidation, process. This ontology makes isatwsdeo hsapoahacretyi rga

possible to state rule of behavior composition. Le., temple The motisn of reducing coepleximy by reasoning about a p
patterns of behavior ad structure we used to Later additiosal of subcomponents as a stagia abstract component in shared by the
behaviors. work of Sasa ad Steeds 171en s embodied ma theirmte

of "elfcee." However, the aim amd methods of their pooa
1. Introduction make the details very differeus.

Naive Physics ms the commoesne knowledge that people hae
about the world. This kaowaledge iacludes the ability to Fr"st we argue that qualitave simulation hs several
quislisasively undersood the behavior of physical systae. Our anek chrceitc as a Nam Physics theory. Neot, we

invstiatin i pesetlyconered itha sbss; f pysial introduce consolidation, dividing the discussion Loto the

sstim meusn opreesig ne nd fcso wia est Ultimatylycal description of components and the inference of behavior. A

to a wide variety of understasidiag; problems. However, the discussed.
research described here is conducted specifically on the problem of 2.Critique of Qualitative Simulation
deriving the behavior of a device give. its structural description
ad the behavior of its component* We hope to integrate th 2.1. Completity
results of this research with other work concerning the functional Ons dank"bl property of a Naive Physics theory in nmpitcsty
repeseutaio ad diagnosis of complex device. :61..1cmusa. Wieurntheisofqlttveiuaio

One meost approach to this problem is quostafetse (QS) may be usful for providing upper bouads on the
snuieaho !2. 1, 51, The description of the device deotermiass the compete of qualitatively, reasoning agents, they are
relevat quantities and constraints of the simulation. a simulato. unsatiniactoty to account for homan reasoniag behavior due to
is Paerred, and the results are transformed into seorpuuesons the following two Measons.
of the device's overall behavior. rirs, QS is a gulel reeasags process. To perform the

This difers from quantitative simulation in several ways. simulation hor a particular poise in time and to check if it has
lonsed of assigninig spiecific vale. to a quantity, only its oan been doe consistently. all the quantitie and conetraiats must be
relsonehip to important const"ant oor quantities is sa& taken into account. To go fRom one time point to another, the
Couserasnes an also qualitatively stated, e.g., proportionality may derivative of every quanity mste be examined to update the
be seemsed, bet not a specific Function. In addition to constraint quantities' value.. Tis is true so matter the number of
satisaction (the analogue of simulation by numerical methods). quantities a"d consraints the device has. A hierarchical
the technique. of qualitative simulation maclade constraint breakdown is dificult because QS relies on aearly-closed system
propagation, and matchiag descriptions of potential proeses (boundary condition mom be knowu or enumerable) and on m
The prociew of interpretation extracts state, transition information, conetrainat propagation. rorbus's notion of p-components (31
summarising the possible behaviors and infeurring; cam"a provides a method for subdividing a situation into independent
relationships between device status, Parts. However, when the parts "r more mutually dependent as

in a device, additional techniques are called for.

________________Second, some theories of QS involves jobstantaal matAtinaticad
ressemun. Quantities and their denivatives must be carefully

Other problems include design, diagnosis, planning (using handled so that constraints are not violated, and continuity is
device. to accomplish a goal), etc. maintained. Since the constraints an stated in terms of
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arithmetic and differential relationships, constraint propagation One thing a component has is structure. On its exterior, it has
and chocking for consistency require a considerable amount of places which are used to connect it to other components. On its
matbhematical reasoning. It must be stated, however, that interior, it has places which hold or contain substances. The
Forbus's approach avoids much of the complexity of constraint other thing a component has is behnvor, how it acts and is acted
propagation by restricting the paths over which propagation can upon by substances. This section discusses how we represent the
occur. structure and behavior of components; the following section

2.2. Causality describes what inferences this representation supports.

Another desirable property is explaining the device's behavior in 3.1. Structural Primitives
terms of the behavior and structure of its components; we want Like do Kleer & Brown, we will use connection to signify that
to know the cause of the device's behavior. Causality in some one component is attached to another component or is otherwise
theories, especially the confluence theory of do Kleer & Brown [21, in meaningful spatial contact with it. An example of
is identified mainly with the propagation of values through 'meaningful spatial contact" is the relationship of the surface of
constraints. light bulb with the space around it, which in turn, might be in

The major problem with this poeition is that causality is contact with something that the light affects. Note that we also

viewed as a "last straw" phsamoienon, i.e., the saying "the last include empty space as a type of component. This is essential

straw broke the camel's back" would be translated, in this view, for reasoning about movement though space, and about

to "the last straw was the cause of the camel's broken back". magnetism and gravity.

Do Klesr & Brown admit that their version of QS does not We alSo use contAiNmemn as a structural relationship to
identify "the support which enables the causal action path to represent the places inside components that substances can move
exist" [1. However, it seems wrong to omit the support from a from, move into, and be at ret. These places may or may not
causal account, since the support may include the primary causal have significant capacity. The importance of this concept for
processes of the effect (e.g., moet of the weight is already on the Naive Physics theories was emphasised by Hayes [41.
camel's back). For example, the light bulb in figure 1 has three connections:

2.3. Representation two electricity connections called "endil" and "end2", and a light
QS theories require descriptions of components to specify their connection called "surface". Inside of the light bulb, there are

outward structure, the quantities that are involved in interaction places where electricity passes through, and where light is
with other components, the constraints on those quantities, and produced. To model this, containqrs called "electrical" and
the behavioral states.* This description may be thought of as "light source" am attributed to the light bulb, and are used in

the behavioral lows of the component. On the other hand, the the behavioral description on the right.

representation of device behavior does not describe its behavioral
laws, but is a network which shows the temporal (and causal) 3.2. Types of Component Behavior

iequence of the components' states. If this proces were to be Components act upon substances. We propose to describe these

repeated one more level (i.e., where the device at this level actions by a small set of relationships, using them as a

becomes a component at the next level), QS is not helpful, since foundation for representing additional knowledge about
it needs to have the behavioral laws of the device. This twin components and substances. They are:

representation of behavior together with the global nature of QS # Allow. The component permits a specified kind of
limits the applicability of this approach, substance to move from one place to another.

Another problem with current representations is the ontoloqcal e Influence. The component tries to move a specified kind of
1p imposeeriment of a theory primarily based on quantities and substance. There are two subtypes according to the spatial
constraints. It is the burden of the model-builder to insure that relationship of the influence with potential sinks and
the right types of quantities and constraints are represented and sources.
consistently defined. While there are guidelines for how to do 0 Pump. The component tries to move a substance
this, these guidelines are outside the 'epresentatsonal system. For through it, e.g., a battery has a pump electricity
example, Ohm's law is very significant for describing the behavior behavior from the neative to the positive terminal.
of electrical components. However. Ohm's law itself is not The sink and source are external to a pump behavior.
represented in QS, but is compWed into each component
description that depends on it.- o Expel. The component tries to move a substance from

(or to) an internal container, e.g., a balloon has a
3. Consolidation: Description of Components expel air behavior.

Components interact with other components. The interaction is e ,Wove. The component moves a specified kind of substance
not just about components, but about the "stuff" or substances from one contner to another along a specifed path.
which potentially move between components and affect their Move behaviors are implicitly constrained by the amount

". ., behavior. What does a component have so that interactions can and capaior the ciby.- and capacity of the containers.
4i occur? We believe that a commonsense answer has two parts.

0 Creats. The component creates a specified kind of
substance in a container, e.g., a light bulb has a create

Different "behavioral states" are associated with different sets light behavior.

of constraint.. The total itate of a comnrpt.i ent is its behavioral e Destroy. The component destroys a specified kind of
state and the values of its quantitips. substance in a container, e.g., an acoustic insulator has a

* This criticianf doesn't apply to Forbus'. Qualitative Process destroy sound behavior.

theory , i.e.. a single qualitative process description can be For example, the light bulb in figure 1 has allow electricity,
used to represent Ohm's law.
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*gate I upon by subetaaces. For example, ike rate quanity of the
I allow electricity between emill ane! en2 crate light behavior of the light bulb is described as
---- tir electrical. proportional to the rate of a move electricity behavior which

e2l resistence 0. sta"e Clne" goes through the light balb.
'---I switch I allow signal frome gate to soonerl
I I I chang stage to clong" 4. Conslidation: Inference of Behavior

*----------. wen lumnsignalfrom gate We propoe toiferte betavor of adevice byatform of
I enii to ear: rae eal composition. The behavior of selected substructures or composite p

I I aemsesent of ihe device in Wnnd from ike behavior and
I Istructume of thew subcomponens. Compositse an uned an

I---------. pump electricity firem aegative tocslual contet for farming intermediate poiats of understanding about
I I I e peltie tzuiel ttn lecricl the device. Thin compoestica is possible becaune ihe behavior. of

I I battery I amont Poesive coamponnsats an ri presented above anetenle opebe
*II - I allow electriscity between negative tezm. certain behavioral and structural pattemns give rise io additional -

*------------ ene! poeitive teramnal. thrn electrical, behavior.. Theme cannel petters am aima.nd to index into
resitanc postiveknowledge about the behavior of subetancee, i.e., knowledge about

pee nubetaacma in organised around the poesible geseric nituattona in

I I ed alBow electricity between eon" oe! eni which behavior. are infrred.
0 --- thesn electrical. reenintce pesitive 4.1. Causal Patterns of Behavior and Structure

* I I I allw lghtbeteenligt mceA causal pattern describee a situatiost in which a behavior may
I -- light I end wasac occor, sarteing that if certain behaviomn saaidy a specific

atI mLb I create light in light source. strutura re.4asko~p, then asohe behavior of a specified type
*I I ine tpeopoeuenel (Xwmt (f may be caused.' For examaple, the propagate pumup pasternt

------ (meve electricity between eamil specifies that a pump behavior in a serial relationahip with an
I n e)) allow behavior will potesally case another pump behavior,

warface I e.g., a pump electricity behavior between A and B, and an
figure 1: . Lght Bul Deito alow electricity behavior between B and C may cases a pump

behavior between A and C. Whether thin pump behavior
allow light, and ceote light behaviorn (for ike purpoes ad thin actually occus dopesd& on, the physics of ike subetance ad ike
discussion, other behavior. of the light bulb and other detalsn of the nab-behavior.. The following ane the cann"
components have not been displayed). There are coaditions on patterns than we have dincovered so far.
some Of these behaviors. which an specified in the deAils of ike * Serialpamallel allowr. Am allow behavior caused by two
descript ion. For example, the create light behavior in dependent serial or paall allowr behavior.
on movement of electricity. There is more discunion on thin
later. 9 Parallel pemp. A pump behavior ceased by two pump

Some components, sech an the switch, have different, behavioral bhvosi aall

*states. where each satue in associated with different behaviors. e Prope" pomp. A pumup behavior canned by a pump
*An additional type of behavior, change s""t, specifmes a prdct and an allow behavior in serial.

aso behavior and ihe next state of the component. For example, a Propagate expeL Au expel behavior caused by an expel
the switch in figure t has two states, open ad clonedl, where the behavior and allow behavior in serial.
cloned state han an allowr electricity behavior, and the open sawe
does not. The switch also has an allow signal behavior, and it Sermi/parallel move A move behavior cauned by two
will chansge state depending on the control signal that it serial or parallel movre behavior.
receives. . Pump move. A ove behavior canned by a pump

3.3. uanttiesbehavior and an allow behavior, both on the same path
3.3. uanttiesfrom one container to another. In thin pattern, the source

We use quantities to describe additional detail about behavior.l and sink may be the name container in which cane the
and contaiaer.. Moet of the behaviors have a natumal movement in &arnd a circuit.
meansrement: muove ~by rate of movement, covate by rate of
creation, destroy by rate of destruction, and Influestce by aExpel move. A ovoe behavior cauned by an allow
amount of influence. Alem, some behavior., especially allow behavior which "connects" an expel behavior to another
behavior., may have special quantities which are specific to the container.
subetance. Restancs, capacitance, and inductance are examplen; We do not claim that thin list is complete. Additional patterns
from electricity. The alHow electricity behavior of the light bulb, may be required to reans about concepts like momentum, in

forexmpehana oetie rnuane.which movement leads to additional influences. However, weMO
Each container han quantities which deecribe its capacity and believe that the number of additional patterns will be small.

amount. The container. of the components in figure 1 can be
modled wit ifintesma caaciy, so nteesing saue Currently, out theory dones not handle situations in which the W

*concerunn these quantities do not arme. (n section S, we will behavior. satisfying a pattern refer to different subesaces, e.g.,
*discuss am example in which these quantities have significant oil and water.

beairlcneune.. Roughly, two behaviors are "serial" if they share an
Quoantities can be twd to express how some behaviors are endpoint; two behaviors are 'parallel" if they have the sante

dependent on other behaviors, i.e., how the component is acted endpoints.
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Suppose tha a composite of the battery and the switch in quantities. Each subsance has procedures which ate associated
figure I is chosen for processing. Behaviors are inferred based on with the causal patterns, and with other known situations such as
the causal patterns as follows: dependencies and the inference of composite containers. For

Using the serial allow pattern, an allow behavior between example, when the serial allow pattern matches on behaviors
the negative terminal of the battery and end2 of the switch involving electricity, the resistance of the caused behavior is
is inferred. The resistance is determined to be positive from determined by summing the resistances of the causing behaviors.

knowledge about electricity. Since the switch's allow The ressoning is more complicated when dependencies are
behavior is active only during the closed *tat*, the same is involved. Suppose that we chose a composite consisting of the
true of the inferred behavior. Since the states of the switch light bulb and switch. This composite will also have a create
rmlt in different behavior of the battery-switch, the light behavior, which should have a rate quantity specified as:
battery-switch also ha open and closed states. proporton (mntuds (rat

e Using the propagate pump pattern, a pump behavior (move electricity between enil of the switch
from the negative terminal of the battery to end2 of the and end2 of the li ht bulb)))
switch is inferred. The amount is determined to be The places mentioned by the dependency must be part of the
positive, simplified structure of the composite. To do this, there must be

The causal patterns do not take into account that the battery- knowledge of what paths through the composite will also go
switch will also have the allow signal and change state through the light bulb, and the dependency must be modified
behaviors of the switch. In general, those behaviors which affect accordingly.
the outward behavior of the composite, and which are not
subsumed by an inferred behavior need to be copied to the 4.4. Light Inference

composite. Alo, mae thus noe of the causal patterns refer to The primary effect of the light bulb system is that light is

create and destroy behaviors. Thes kinds of behaviors am produced when the switch is closed. Consider now a composite

transfer,.4 to the composite if they ar connected to the which consists of the battery-switch and the light bulb. This

"outasde" by allow behaviors, inference can proceed as follows:

e The allow electricity behaviors of the battery-switch andTesc ausalo at3ter ns nctry ocess light bulb satisfy the serial allow pattern, resulting in andescriptions 13.Both describe the conditions neceseary for some allow electricity behavior around the electrical circuit. The
behavior to happen. One important difference is that the causal resistelcetis iti behavior is actie oyrithe
patterns are generic to all substances. While a process closd state.

description can be staged at a high level of generality, there is no

commitment by the theory to any particular level of generality. 9 The pump electricity behavior of the battery-switch and
- In practice, there are different process descriptions for different the allow electricity behavior of the light bulb satisfy the

types of substances such as liquid, gas, heat, etc. Also, the propagate pump pattern, from which a pump electricity
process descriptions can be used only when changes occur, while behavior around the circuit is inferred. The amount of the
the causal patterns can handle situations, such as two batteries behavior is positive. The behavior is active only during the
connected serially, in which no physical change takes place. closed state.

4.2. Simplification of Structure e The two behaviors inferred above satisfy the pump move
If a composite simply inherited the structure of its pattern, so a move behavior around the circuit is inferred.

subcomponfents, the description of !arger composites would become The rate of the move is positive. The direction depends on

increasingly complex, making it harder to reason about them. how electricity is modeled.
This is allayed in two ways. First of all, only the external e This move behavior satisfies the dependency expressed in
connections of the composite become part of its behavioral the create light behavior of the light bulb. The rate of
description. For example, the positive terminal of the battery creation is calculated as positive.
and endi of the switch would not be referenced in the battery- In the inference of the rate of creation, every behavior of the
Switch's description. components and element of structure which plays some role in

Second, composite contasners may be instantiated as the creation of light has been used in the consolidation process.
combinations of several other containers. In the battery-switch, The eszplantton of thu sinference provides a complete causal
the electrical contaners of the battery and switch are combined account of the creation of light in te light bulb system in terms
to form a single electrical container. The creation of composite of the components' behavior and the device's structure.
containers is governed by the inference of behaviors, under a
constraint that restricts behaviors to reference only a limited Also note that all the electrical connections are internal to the

number of connections and coetainers. For example, the "thr" device. Thus no electricity behavior becomes part of the final

attnbute of the inferred allow electricity behavior of the description of the device's behavior. The devicecs behavsornl

battry-with my ony ee oce ne cntaner ths a description states only what the outward behavior of the device is,baubattery-switch may only reference one container, thus a

composite container is instantiated. not how it u accomplished.

4.3. Physics of Substances 5. Another example
To further illustrate how consolidation works and to explain* The physics knowledge cntair s the procedures that are used to additional features of this analysis, consider the situation in Figure

2. The source and sink components have containers of water of

differing temperatures. The source component has an expel
water behavior. There is a connection between the components

Connections which connect two or more components are which permits the flow of water.
assumed to be internal to the device, unless declared otherwise.
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---- showing the behavioral relationshipe between the components and
I I Continer a of water. tamperelars £ the device. A complete account includes the dependencies

I mieut I exel water freom a between behaviors, and how they sam satisfied.
I I allow water between a end holediths bwendfrntyeso

hale quantities and conssans Different quantutie awe associated
with the beheviors and substances thas they describe.

hale Cosul""n awe embedded within dependencies ad the physics
knolede o suegacaLThe device's behavior is representd in

I cotainr b f wter.tempratue ythe sae manner as a component's behavior.

I SIMb I allo0Ww ait behwen b and bole A possbl problem is that states of comtponets alnms always
I I become state of composites A comibinatorial problem might

------ occu when several components have multiple state. One

Figre 1 WterConainrsalternative is to ame simualationt in thin hind of situon. A more
11631 2, ater ont~nsISinteresting Alternative is to simpliy the description. of composites

A d~ifcuty in modeling this device as representing tepraue wag variousas such as isdfemag that certain states ame
We will eny that the w4ae within the a and Is contsumes contasn imipossible, combining related states into a singie state, etc..2

heat. and that water has a expal hat behavior. The amount of Consolidation is but one of the multiplicity of processes and
the expel behavior correspondis to the wates temperature. This reproesnations that tie a pant of Nauv Physics reasoning.
aeededt notio of contaimeont can a"e be used to model feather reseach is ciled for in describing the relationship

coecntrtlse o disoled ateiaLbeteenconsolidation and qualitative simulation, in expanding the

When water moements in inl1md, heat movement should also ucs of the Structural primitives, and in representag and
be nfilre. Te WVO OfhemWil 80*Sl afpstthe integrating, for example, discreteness of motion, temporality. and

amount of heat, bat will affect the amount of the expel heat mixing of Substances.
behavior within the containes. These inferences an genseral
enough to be codiflied as causal pattern Acknowlsgents
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compared with another, or how the knowledge shouldAbstract reflect how a physician thinks or the way the body

functions are questions which are not resolved by the
CSRL (Conceptual Structures Representation language.
Language) is a language for implementing the
classification portion of an expert diagnostic system. We will discuss how medical knowledge interact.,
Our approach to classification calls for a problem with the constraints of CSRL to influence the design
solving structure that is organised as a classification of an expert system. In particular, two critical design
hierarchy (e.g. a classification of dinses). Each problems must be faced:
hypothesis in the hierarchy is associated with a
"specialist" which performs the decision-making
activity for the hypothesis. A top-down strategy a forming a classification of hypotheses which

called establish-refine is used in which either a is compatible with the basic establish-refine

specialist establishes and then refines itself, or the strategy of classification; and

specialist rejects itself, pruning all the specialists below
it. CSRL is a language for representing the specis 9 encoding knowledge for each disease so that

of a hierarchy, and the knowledge embedded within the plausibilty of the disease is accurately S
them. This paper discusses how medical knowledge evaluated.
should be applied to the two critical design problems Before we enter this discussion, however, we will
of CSRL: forming a hierarchy which is compatible introduce our approach to diagnostic problem solving
with the establish-refine strategy, and implementing and the main features of CSRL. p"

stpecialists that accurately evaluate the plausibility of

their corresponding hypotheses. 2. Introduction to Diagnostic Problem

1. Introduction Solving
CSRL (Conceptual Structures Representation An important part of diagnosis is the classification

Language) is a language for implementing classification of cans data into plausible malfunctions. Classification
problem solves. Our approach to classificAtion is an is a specific type of problem solving in our approach,',
outgrowth of ou group's experience with MDX, a meaning that a special kind of organization and Q

medical diagnostic program [61, and with applying special strategies are strongly associated with it. In
MDX-like problem solving to other medical and non- this section, we will briefly review the theory of
medical domains. CSRL facilitates the development of problem solving types as presented by
diagnostic systems by supporting constructs which Chandrsekaran [3, 4, S, the structure and strategies
represent classificatory knowledge at appropriate levels of the classification task, and the role of classification
of abstraction. The intent is to allow the system in diagnosis. F
implemento to moee directly encode the knowledge 01
acquired from domain experts, and to avoid much of 2.1. Problem Solving Types
the detail assciated with general purpose languages. We propose that expert problem solving is composed

of a collection of different problem solving abilities. P
We will focus on how to use CSRL to construct The Al group at Ohio State has been working at

diagnostic expert systems in the medical domain. Our identifying well-defined types of problem solving (called
motivation for doing so is because CSRL's intended generic tasks), one of which is classification. Other
use, like every other languag, cannot be exprsd examples include knowledge-directed data retrieval, U
solely by describing its syntax and semantics. For consequence finding, and a restricted form of design.
example, how one diagnostic representation should be

Jl
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Each generic task calls for a particular organizational Cholestasis
and problem solving structure. Given a specific kind
of task to perform, the idea is that specific ways to
organize and use knowledge are ideally suited for that Extra-hepatic Intra-hepatic
task. Cholestasis Cholestasis

Even when the specification of a problem is reduced
to a given task within a given domain, the amount of EEC Due to EHC Due to
knowledge which is needed can still be enormous (e.g., Bile Duct Stone Bile Duct Tumor
classifying diseases). In our approach, the knowledge
structure for a given task and domain is composed of Figure 1: Fragment of MDX's diagnostic hierarchy
specialists, which correspond to different concepts of
the domain, and perform the decision-making activity
associated with that concept. Domain knowledge is If this value is high enough, the specialist is said to
distributed across the specialists, dividing the problem be established, i.e., the disease is established as
into more manageable parts, and organizing the relevant to the case. Each specialist is a problem
knowledge into pieces which become relevant when the solver with its own knowledge base.
corresponding concepts become relevant during the
problem solving. The basic strategy of classification is a process of

hypothesis refinement, which we call establish-refine.
Decomposing a domain into specialists raises the In this strategy, if a specialist establishes itself, then it

problem of how they will coordinate during the refines the disease hypothesis by invoking its
problem solving process. First, the specialists as a subspecialists, which also perform the establish-refine
whole are organized, primarily around the strategy. If the confidence value is low, the specialist
"subspecialist-of" relationship. Each task may supply rejects the disease hypothesis, and performs no further
additional relationships that may hold between actions. Note 'that when this happens, the whole
specialists. Second, each task is associated with a set hierarchy below the specialist is eliminated from
of strategies which take advantage of these consideration. Otherwise the specialist suspends itself,
relationships and the problem solving capabilities of and may later refine itself if its superior requests it.gthe individual specialists. The choice of what strategy
to follow is not necessarily a global decision, but can With regard to figure 1, the following scenario might
be determined by the specialists in the hierarchy. oecur. First, the cholestasis specialist is invoked, since

it is the top specialist in the hierarchy. Cholestasis is
2.2. Classification Problem Solving then established, and the two specialists below it are

The classification task is the identification of a case invoked. Extra-hepatic cholestasis is rejected, also
description with a specific node in a pre-determined eliminating EHC due to stone and bile duct cancer
classification hierarchy. Each node in the hierarchy from further consideration. Finally, intra-hepatic
corresponds to a hypothesis about the state of the cholestasis establishes itself, and invokes its
situation under consideration. Nodes higher in the subapecialists.
hierarchy represeent more general hypotheses, while
lower nodes are more specific. In medicine, a case This simple version of classification does not specify
description is the manifestations and background additional specialist-specialist relationships, use
information of a patient, and the hierarchy is a recommendation rules, or employ additional control
classification of diseases and disease classes. For strategies to handle complex situations (e.g. when
example, the diagnostic expert system MDX 161 several nodes are in a suspended state). For
attempts to classify a medical case into a hierarchy of discussion on these topics, see Gomez and
cholestatic diseases. Figure I illustrates a fragment of Chandrasekaran 181 and Sticklen et.al. I 31.
MDX's hierarchy. The most general disease,
cholestasis in this example, is the head node of 2.3. The Role of Classification in Diagnosis
hierarchy. More specific cholestatic diseases such as Diagnosis in general is a complex task which requires
extra-hepatic cholestasis are classified within the other kinds of problem solving in addition to
hierarchy. classification. One important companion to the

classification hierarchy is an intelligent database
Each disease in the hierarchy is associated with a assistant which organizes the case description, answers

specialist which contains the decision knowledge to queries from the classification specialists, and makes
evaluate the plausibility of the disease from the cae simple inferences from the data (II. For example,
description, specifically the specialist can produce a the database should be able to infer exposure to
measurement (called its "confidence value") anesthetics from major surgery or exposure to
representing the degree of plausibility of the disease. halothane. The classificatory specialists are then

a..o',
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relieved from determining how a particular datum which map a list of values (based on queries to the
could be inferred from another datum. data base. boolean combinations of queries, other kg's)

into a value on a small discrete scale. The knowledge
Another important part of diagnosis is accounting for in a specialist can be factored into several kg's. whose

the patient's manifestations, and producing composite values are input to other kg's.
hypotheses when one disease cannot account for all
the findings. Josephson et.al. [10! have proposed a Figure 3 illustrates a table kg named physical
method (called hypothesis assembly) to perform these (other types of kg's in CSRL are comparable to tables
actions in coordination with a classification problem and will not be of concern here). The conditions
solver. Roughly, the classification problem solver following match query the data base, which is
generates plausible hypotheses, and determines the independent of CSRL, for whether the patient has
data they can account for. The hypothesis amembler cholangitis, colicky pain in the liver, or has been
builds and critiques composite hypotheses. vomiting. Each rule following the with is evaluated

until one matches. The value corresponding to this
There am several other issues relevant to diagnostic rule becomes the value of the kg. For example, the

problem solving which we will not consider here. such first rule matches if the first and second conditions
as teat ordering, causal explanation of findings, and are true (the "?" means doesn't matter). If so. then
therapeutic action. Fully resolving all of these issues 3 becomes the value of the knowledge group.
and integrating their solutions into the diagnostic Otherwise, successive rules are evaluated. The value
framework am problems for future research. of the physical kg can be a condition in another

table, whose match section might contain tests like
3. CSRL (GZ 2) or (LT 0) with the obvious meaning.
CSRL is a language for representing the specialists

of a claiification hierarchy and the knowledge within i
them. This section briefly describes what CSRL looks (physical table
like, and the actions that the language can specify. A (mtch (Present? Cholangitis)
more detailed description of CSRL can be found in (Pain? Abdomen Colicky)
Bylander et.aL [2j. (present? Vomiting)

3.1. Specialists ithTthen3
In CSRL, a classificatory expert system is (lseif ? T T then 2 1

implemented by individually defining its specialists. elseif ? T ? then 1
These definitions include the specialist's relationship to elseif T ? ? then 1
neighboring specialists in the hierarchy (its elseif ? ? ? then -1)))
superspecialist and subepecialists), and the knowledge
that the specialist uses during the classification Figure 3: Example of a knowledge group .

procem. Figure 2 is a skeleton of a specialist
definition for the Extra-hepatic Cholestasis node in -
figure 1. The declare section specifies its 3.3. Message Procedures of a Specialist
relationships to other specialists. The other sections The messages section of a specialist defines a list
ae examined below. of message procedures, which specify how the specialist

wi respond to different mesmages from its
superspecialiet. Figure 4 is a message procedure which

(Specialist Extra-rep indicates what to do when a Establish-Refine
(declare (supetspecialist Cholestasis) memsage is received. The SetConf idence statement

(subepecialists Stone BD'uamor) sets the confidence value of the specialist containing
this procedure to the value of the summary kg. In -

(kgs ...) CSRL, confidence values are taken from a seven-point
(messaes ... l }}scale. For convenience we use the integers from -3 to

+3. If the specialist establishes itself (+? is a '11
FIue 2: Skeleton spcialist for Extra-Hepatic predicate which is true if the confidence value of its 1

Cholestasis argument is 2 or 3), then the for statement is
executed. This statement invokes each subspecialist
with an Establish-Refine message. "Self" and

3.2. Knowledge Groups "subspecialists" are keywords which evaluate to
The kgs section contains a list of knowledge groups, the name of the specialist and its subspecialists,

which am used to determine the confidence value of a respectivey.
specialis? from the cm description. A knowledge
group (kg) can be thought of as a group of rules

%U



(Establish-Refine of them are rejected, then the viral hepatitis specialist
(SetConfidence self summary) needs to take the results of its superspecialists into
(if (+? self) account. This would increase the complexity of the

then (for sub in subspecialists language, and make it more difficult to use.
do (Call sub with

Establish-Refine)) )) It should be pointed out that we are not against

,-, Figure 4: Example of a message procedure tangled hierarchies, per se, but we are against
increasing complexity and "knowledge" without
achieving a corresponding gain in problem solving
ability. CSRL hierarchies are not intended to encode

3.4. Levels of Abstraction all the "facts" of a domain, but to encode an efficient
These constructs can be used to implement a problem solving structure. There is a need to

multilayer evaluation of a disease. At the lowest carefully choose those facts which facilitate
levels, rules test the values of database queries, and classification rather than hinder it. By restricting the
are grouped into kg's. Following this, there can be structure to a tree, the user is required to face these
any number of levels in which several kg's are unpleasant, but necessary decisions. In practice we
sutumarized by another kg. At the highest level, have found that tree structures are sufficiently
CSRL statements can be used to test the values of powerful for many classification problems. Also. our
kg's and to set the confidence value of the specialist, group is exploring methods which control tangled
These levels of abstraction allow a large number of hierarchies effectively.
findings to be combined by factoring them into
meaningful chunks, evaluating each chunk, and then 4.1. Choosing Between Different Hierarchies

* summarizing the results. This method of combining To illustrate the criteria for choosing a CSRL
evidence is borrowed from MDX [7;. hierarchy, we will present two hierarchies which

include viral hepatitis and then evaluate them. The
3.5. Status hierarchy in figure .5. differentiates all illnesses, into

CSRL is implemented on a LISP machine using the infection, cancer, trauma, etc. Infection is further
e INTERLISP-D language [91 and the LOOPS object- subclassified into viral, bacterial, and fungal infections.

oriented programming tool [11. Each specialist is Viral infection has viral hepatitis, viral meningitis,
implemented as a LOOPS class, which is instantiated viral encephalitis, etc. as subspecialists. In general,
for each case that is run. The LOOPS class hierarchy the names of the nodes are abbreviations of more
is used to specify default message procedures and complex statements. The "viral" node in the figure.
shared knowledge groups, making it easy to encode a 1br example, stands for "viral type of infection."
default establish-refine strategy, and letting the user "Viral hepatitis" stands for "hepatitis due to viral

-. , incrementally modify this strategy and add strategies infection."
as desired. A graphical interface displays the
specialist hierarchy, and through the use of a mouse,
allows the user to easily access and modify any part illness
of the hierarchy.

4. Forming a Classification Hierarchy cancer infection trauma
This section discusses criteria for building a

" classification hierarchy in the medical domain. An
initial difficulty is that a CSRL hierarchy is required bacterial viral fungal
to be a tree structure, i.e., a specialist can only have
one superspeciallist. For medicine this appears to be

.a., overly restrictive, since it prevents the implementation viral hepat ..

of alternative classifications of diseases, e.g., viral

hepatitis is an infection, as well as a liver disease. v. meningitis
However, there are some advantages for making this

La restriction in this language. Figure 5: A diagnostic hierarchy containing viral
hepatitis

This restriction simplifies the implementation of the
language, as well as the implementation of expert
systems in the language. In a "tangled" hierarchy, The second hierarchy (figure 6) divides illness into
additional strategies would be required, e.g., when liver, kidney, brain, etc. (location of disease). Liver
viral hepatitis appears to be relevant during the is subdivided into hepatitis, cirrhosis, cholestasis, etc.
problem solving, all the superspecialists of the viral (condition due to liver disease). Hepatitis is
hepatitis specialist need to be considered, and if none subclassified into viral and toxic hepatitis (cause of

hepatitis).



illness necessary to obtain a reliable decision. Fortunately
though, signs, symptoms, generally available laboratory
data, and combinations thereof can also reliably

kidney liver brain ... indicate the presence or absence of hepatitis.

Since a specialist is not evaluated if any of its
cirrhosis hepatitis cholestasis ... superiors have been rejected, the specialist can be

implemented assuming that its superiors are plausible.
For example, the viral hepatitis specialist in LH could

viral hep. toxic hop. be implemented assuming that the plausibility of

Figure 6: Another hierarchy containing viral hepatitis has already been established. Besides being
an efficiency measure (the viral hepatitis specialisthepatitis doesn't have to redo the work of the hepatitis

specialist), this context allows evidence which
distinguishes viral hepatitis from toxic hepatitis to be

We will call the first hierarchy the Infection used to increase confidence in viral hepatitis. For
Hierarchy (IH) and the second the Liver Hierarchy example, if we know that hepatitis is plausible and L
(LH). No claim is made that either one represents that the patient has not been exposed to any
the best (or worst) disease hierarchy. hepatotoxins, then viral hepatitis will be implicated.

One desirable quality of a CSRL hierarchy then is
. Given the situation where a CSRL knowledge that its specialists provide good differential contexts.

engineer was deciding whether IH or LH was more The specialists in LH are better than 1H in this
appropriate, a main consideration is the ability to regard.
achieve enough confidence in the presence or absence %
of a specialist to lead the establish-refine procem in The existence of a specialist should imply the
the right direction. This property is especially existence of its superpecialist. Normally this is not a
important for higher level specialists. If there is high problem (camse of viral hepatitis, for example, are by
confidence in such a specialist, it provides focus for definition cas of infection), but in some instances
further exploration. K a high level specialist can be this is meaningful to consider. Suppose that we
confidently rejected, a large portion of the hierarchy propose jaundice as a subepecialist of liver (to be
can be eliminated from consideration. We will call precise, "jaundice due to liver disem"). Since
such a specialist an "anchor" specialist, hepatitis can cause jaundice, it might be appropriate

to propose hepatitis as a subepecialist of jaundice.
A specialist is an anchor specialist if there is However, problems will occur because there are a

sufficient evidence to distinguish the specialist from significant number of hepatitis cases in which jaundice
other specialists. Specialists in LH are better than [H never appears, or appears late in the process. This
in this regard. The presence or absence of liver hierarchy will misdiagnose these cases simply because
disease can be evaluated by laboratory tests of the the hierarchy is improperly formed. To remedy this
serum and urine, and by clinical symptoms such as problem, the hepatitis specialist should be renamed
jaundice and liver size. Hepatitis can be specifically "hepatitis causing jaundice," and there should be
determined via biopsy. Although there is evidence other specialists elsewhere under liver which
which is suggestive of infection (such as fever, correspond to other "kinds" of hepatitis.*
abnormal white blood count, high percentage of band
cells) and viral infection (low white blood count, high Finally, a hierarchy is usually designed to make
percentage of lymphocytes), the evidence does not certain diagnostic statements. If you intend to
clearly distinguish infection or viral infection from develop an expert system which can directly conclude
other diseases. Also, even if these patterns don't infection, then IN better satisfies that purpose. If you
exist, infection and viral infection an still reasonable need a system which has hepatitis and cirrhosis as
hypotheses. Thus unlike liver and hepatitis, it is specialists, then LH is better.

- difficult to achieve high or low confidence in infection
or viral infection. From these criteria, the kinds of questions that one

should ask about a CSRL hierarchy are:
Evidence for or against a specialist is not very useful

* if it is not likely to be available to the sytem when
it is running. For example, although a liver biopsy
can indicate hepatitis reliably, it is relatively risky and
timeconsuming to perform, so it is not typically done This type of redundancy is inevitable in any CSRL
on patients early in the diagnostic procee. Heptitis hierarchy. IH, for example, must contain liver
then would be a poor anchor specialist if a biopsy was diseases across separate branches of the hierarchy,

while LH must contain infections in separate branches.

U
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e Are the specialists anchor specialists? instead into liver infection. liver cancer.
toxic liver, etc.

* Is the evidence that is needed for a
confident decision normally available to the * A specialist can state the type of cause
system in the early stages of its problem that is involved with the disease. This is
solving? the parameter used to decompose infection

into viral, bacterial, and fungal infection.
a Do the specialists provide good differential

contexts? 9 A specialist can also point out the specific
entity which is involved. Viral hepatitis

* Does the presence of each specialist logically could be decomposed according to specific
imply the presence of its superspecialist? viruses, e.g., hepatitis A and B, Epstein-

Barr, mumps, etc.
e Does the hierarchy make the diagnostic The last three attributes could be grouped as

statements that it is intended to? elal trs.~etiological tfactors.

4.2. How a Specialist Decomposes This is not intended to be a complete list of
The basic relationship between a specialist and any

of its subspecialists is that the subspecialist represents ciassification attributes. Other possibilities include
a more specific hypothesis about the diagnostic state temporal factors (e.g., acute vs. chronic) and physical

of the patient. The hierarchies in figures 5 and 6 distribution (e.g., focal vs. diffuse). Also we have not

exemplify this relationship. A simple method to precisely indicated the causal relationships are possible

subclassify or decompose a specialist into its among these attributes. e.g., inflammation (a

subspecialists is to ask the domain expert what should condition) could be viewed as either causing disease,

be considered next after that specialist is established. or being caused by disease.

For example, a physician who is asked what should 'be
done after establishing hepatitis might say to then As a result of our experience, we suggest that a

differentiate between viral and toxic hepatitis. diagnostic hierarchy should be formed according to the
following heuristics.

A more careful approach would also look at what
kinds of additional information can be used to * The top levels of the hierarchy should
decompose a specialist. By considering these, one can specify the locations or systems containing
determine what decompositions are possible and the diseases.
evaluate them using the criteria discussed above.
Another motivation is to more precisely define what a . The middle levels should specify the
specialist can be, i.e., it represents a diagnostic conditions caused by the diseases, the
statement that specifies one or more of the following syndromes associated with the diseases,
attributes. and/or the underlying processes causing the

diseases.
* A specialist can indicate the location of a

disease. For example, in figure 6, illness is e The bottom levels should identify the

decomposed into the location of illness - specific etiological agents of the diseases,

liver, kidney, brain, etc. such as the microorganism causing the
infection.

. The system that the disease affects can be
specified. Illness, for example, could be 5. Establishing a Specialist
alternatively decomposed into circulatory The most important pan of implementing a

W- system, urinary system, nervous system, and specialist in CSRL is the knowledge base that
so on, determines the specialist's plausibility. CSRL uses a

7-point scale of -3 to +3 to indicate the relative
* A specialist can specify the pathologic confidence in the specialist. -3 means that the

condition or syndrome associated with the specialist is not plausible. +3 means that the
S disease. For instance, liver in figure 6 is specialist is highly plausible. 0 means that the

decomposed into various conditions of liver evidence is neutral with respect to plausibility. The
disease - hepatitis, cirrhosis, cholestasis, rest of this section discusses the criteria for selecting
etc. the evidence that a specialist uses, and for using

knowledge groups to determine the specialist's
* The underlying process of the disease can confidence value. We will use a specific example, in

be indicated. Liver could be decomposed this case cholestasis, to help clarify the discussion.

.9.
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5.1. Selecting Evidence 5.3. Determining the Set of Knowledge
We have already mentioned in pasing the kinds of Groups

evidence that are desirable to have. The best The important part of this step is to determine
evidence is specific or sensitive to the specialist. From patterns of evidence which correspond to intermediate
a finding that is specific to the specialist, the hypotheses related to the diagnosis of the disease. The
specialist can be definitely established. If a sensitive result from the knowledge group which evaluates this
finding is not present, the specialist can be definitely kind of pattern should be the level of confidence in
rejected. These conclusions can also be inferred from the intermediate hypothesis.
specific and sensitive combinations, or patterns, of t
evidence. A common pattern for most specialists is whether it

No recan be directly oberved (for example by some
SNext to consider a stterns of evidence which visualiation process). For cholestasis, observation of

diffentiate the specialist from its siblinbiary tree obstruction or bile stas is possible by
diagnostic hierarchy. If a pattern is specific in evaluating relevant xrays or liver biopsies.

relation to other siblings of the specialist, then the

confidence in the specialist will be increased. We gave We recommend that the other knowledge groups of a
an example earlier for differentiating viral hepatitis specialist be related to the primitive processes of the
from toxic hepatitis. For cholestasis, lack of liver cell disas. For cholest i, we would examine the major
damage can differentiate it from other liver conditions dose se o c i e ould ane mr*consequences of bile obstruction, and propose
at the same level in our example hierarchy. knowledge groups for ewh of the following:

Finally, the expected patterns of the specialist should
be considered. Confidence in the specialist should 1. Are normal amounts of bile reaching the r.
increase or decrease depending on whether the duodenum? This knowledge group
expected pattern is present or not. The amount of determines if bile is performing its role in
confidence (either for or against) will depend on the the digestive procein.
degr that the pattern is sensitive to the specialist
and unexpected in other specialists. 2. I bile accumulating in the liver and

bloodstream? When the bile cannot be
Each kind of evidence above is used to differentiate excreted via the biliary tree, it accumulates

the specialist from other specialists. Evidence which in the liver, and its constituents enter the
does not satisfy this function should not be used. For -q blood.
example, each kind of cholestamis (e.g., bile duct stone
causing cholestasis) will have the expected patterns of 3. [a there bile duct damage? The kind of
cholestasis, but these patterns are useless for bile duct damage which is associated with -o
differentiating among different causes of cholestasis. obstruction is evaluated.
See Price and Vlahcevic [121 for additional discussion
on the "uw of evidence in medical reasoning. 4. Is them liver cell damage? Lack of liver

cell damage can differentiate cholestasis
5.2. Knowledge Groups from other subepecialists of liver disease.

Each important pattern of evidence asmociated with a
specia should be represented by a knowledge group In addition, characteristica which predispose the
which indicates how wel the findings fit the pattern, patient to the disease should be evaluated. This is
We suget the following process for implementing a not very relevant in the diagnosis of cholestasis (for
set of CSRL knowledge group. First, the patterns of specific causes of cholestasi though, this becomes
evidence which will be implemented as knowledge more important). However, for most kinds of
groups should be decided upon. Next, for each infections, e.g., determining whether the patient has
knowledge group, the findinp that it will evaluate been exposed to the microorganism or is susceptible to
should be selected. A confidence value should then be the infection are important factors to consider in
assigned to each pattern of findings. Like any diagnosis.
program, knowledge groups should be tested and .

debugged on appropriate data, i.e., actual cases. The Another method for dividing a specialist into
following sections examine the steps of this procm kiwledge groups is to have each knowledge group
(except for test and debug) for cholestatic disease. evaluate a particular kind or source of evidence.
We will assume that cholestasis is a subspecialist of Using this method, cholestais could be broken up into
liver disese (as in figure 6). knowledge groups for physical, laboratory, and xray

evidence. These would respectively evaluate the signs
and symptoms, laboratory data, and radiographic data.
This often corresponds to the sequence of evidence

....
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, %; collection that physicians perform in evaluating 5.5. Assigning Confidence Values
N patients. and is useful for diseases whose processes are The last step we will discuss is assigning confidence

not clearly delineated, or when these processes are not values for each combination of the values of the above
known to the physician acting as the domain expert. conditions. We will assume that the possible values

of each condition is true, false, or unknown (T, F, or
5.4. Determining the Findings of a Knowledge U). It is important that the meaning of the

Group knowledge group's result be clear. In this knowledge
Once the knowledge groups have been selected, the group, we want the result to indicate the level of

findings that each knowledge group will evaluate must confidence in the hypothesis "bile is accumulating in
be determined. Here, we will concentrate on the liver and blood." How this value affects
knowledge group 2 from the list above, which confidence in cholestasis is determined by another
examines the findings when bile accumulates in the knowledge group, and will not be discussed here.
liver and blood. Findings which are related to this
decision are jaundice, elevated serum bilirubin, Essentially, this is a process of askaLg the domain
conjugated serum bilirubin, bilirubinuria, pruritis, expert for the level of confidence for each combination.
elevated serum lipids, xanthoma. and large, smooth and insuring that the overall knowledge group is
liver, consistent. This initially appears intimidating since

there are 35=243 possible patterns for this knowledge

When the bile is unable to flow into or through the group. However, the number of rows in a decision
bile ducts, it accumulates in the liver, and enters the table will be much smaller since the values of some
bloodstream. Conjugated bilirubin and lipids are conditions will not matter for some patterns. Also.
major components of bile, so elevated serum bilirubin this problem can be easily handled by dividing the
and serum lipids occur. When serum bilirubin is patterns into separate cases according to the value of
highly elevated for a period of time, it accumulates in a particular condition. For example, figure 7 could be
skin tissue, resulting in jaundice. Since conjugated the segment of the table where the first condition
bilirubin is water-soluble, the kidneys filter it out and (elevated bilirubin) is false. Note that the meaning of
excrete it, resulting in bilirubinuria. Pruritis is the last row, which just checks to see if the first
usually attributed to elevated serum bile salts, and condition is false, depends on what conditions have
their deposition in skin tissue. Xanthoma is a result been taken care of in the previous rows. Also, this
of the excess lipids which accumulate in the skin over figure assumes the 7-point confidence scale described
a period of time. A large, smooth liver is a above. Finally, note that except for coding the

consequence of the bile accumulating within the liver, conditions properly, which depends on how the data
base is implemented, it is trivial to translate the table

The next stage is to combine findings which are into CSRL.
closely related into a single condition. This will
reduce the number of conditions of the decision table,
and simplify the process of filling it in. Jaundice is large
an indication of elevated serum bilirubin and thus can elev. conj. elev. smooth confidence
be combined with elevated serum bilirubin. Similarly, bili. bili. fats prur. liver value
bilirubinuria is an indication of elevated conjugated
bilirubin. Also, elevated serum lipids and xanthoma F T ? T T -1
are both results of bile fats accumulating in the blood, F F ? ? ? -3
so these can be combined. Thus the conditions of F ? F ? ? -3
this knowledge group will be: F ? ? F ? -3

F ? ? ? F -3
e Is jaundice or elevated serum bilirubin F ? -2

present? Figure 7: Fragment of table determining bile

* accumulation
, Is bilirubinuria present or is the conjugated

percentage of serum bilirubin high?

* Is xanthoma or elevated serum lipids 6. Conclusion
% present? Designing a diagnostic system in CSRL requires

emphasis on organizing knowledge to reflect the
e Is pruritis present? structure of diagnostic reasoning. Knowledge is

represented at various levels of abstraction - from the
* Is the liver large and smooth? classification hierarchy to rules within knowledge

groups. This is in contrast to MYCIN and similar
rule-based systems which are constructed as collections

*1



7 7' d
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Abstract

The AIR-CYL expert system for mechanical design is
based on a hierarchy of active design specialists, each of
which solves-part of the design problem and cooperates with
the other specialists. Every specialist uses a small
collection of preformed plans that represent ways to achieve
the subproblem for which that specialist is responsible.
When a specialist is asked to design, it selects a plan from
its collection in a situation dependent manner. We discuss
this plan selection process, and the types of knowledge
used.

Keywords:
Expert Systems, Plans, Design, Plan Selection, Problem-solving.

1 INTRODUCTION

This research is concerned with the design of mechanical
components, and views design as a problem-solving activity.
We will present a theory of design that explains the
activity of a human designer when solving a problem that
falls into a partioAlar subclass of mechanical design. This
paper concentrates on one aspect of design activity, that of
selecting preformed design plans.

Design activity in general has many components; such
as planning, the use of prestored plans, refinement of
descriptions, and the use of large amounts of knowledge.
Not all designing involves all of these. We have identified
three classes of design activity which vary according to
their problem-solving components [CHAN83]. Our work refers
only to the third class, where the designer knows in advance
exactly what knowledge and what type of problem-solving will
be required during the design. An important piece of
knowledge is that at every stage of the design the designer
knows what sequences of design steps are appropriate. Class

-.
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3 design occurs when a specific object has been designed
many times before, each time with different requirements.
Other classes of design are more general and involve other
types of problem-solving, such as planning.

In order to manage the complexity the design is broken
into roughly independent subproblems [SLM069]. The
hierarchy reflects the way that the designer thinks about
the object during design, and, consequently, it shapes the
design process. Our theory hypothesizes that design
activity is organized around this conceptual hierarchy,

pwhere each concept is active in the design, and may be
considered to be a specialist about some portion of the
design. Each specialist does the same kind of design
problem-solving but uses different knowledge.

For every subproblem in a class 3 design the designer
has a small set of Plans that can be followed to produce a
piece of the design. Consequently, each specialist has its
own set of plans from which to select depending on the
current stage of the design. The plans may request portions
of the design from other specialists lower in the hierarchy.
Thus the specialists solve the problem cooperatively.
Tasks, which are pieces of design knowledge local to a
specialist, can be used in plans to make small additions to
the design. Tasks use Steps to decide the value of each
attribute for which it is responsible. For example, a hole
might be designed by a Task, while a Step would decide the
radius. Constraints are placed at various places throughout

i the design knowledge to check the progress of the design and
ensure its validity. A Design Data-Base contains the
current state of the design.

The complete design process proceeds by first obtaining
and checking requirements for consistency. It then does

*rough-design to establish whether full design is worth
pursuing. If the rough-design succeeds, then the full
design is attempted by requesting a design from the top-most
specialist. Communication between active design agents is
done by passing messages that give instructions and report
on success or failure.-

If a design agent fails, a redesign phase is entered
until the problem can be fixed and design can continue.
Different types of agents have different failure recovery
strategies. These result in backing-up over prior design
decisions in a manner which is dependency-based.

To demonstrate and test our theory of design, we have
developed a working expert system, AIR-CYL, that does
Air-cylinder design [BROW83, BROW84A, BROW84B]. The system
closely mirrors the activity of a human designer solving the
same problem. The system will design a particular type of
Air-cylinder according to some set of user given
requirements. The system takes about 5 minutes to design an
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Air-cylinder given about 20 requirements using a
DECsystem-20.

To facilitate the building of the AIR-CYL system, and
class 3 design problem-solvers in general, a language called
DSPL (i.e., Design Specialists and Plans Language) has been
designed and implemented. DSPL has been used to capture theAir-cylinder design knowledge. Close attention has been

paid to the many different types of knowledge that are used
during a design of this kind. DSPL allows different types

of design knowledge to be described separately. This is in
contrast to design systems based on more uniform
representations [MCDE82, STAL76, MOST83, KOWA83].

LJ.

* 2 SPECIALIST ACTION

A specialist is responsible for supervising some portion of
the design. Specialists consider design situations and
produce courses of action which lead to changes in the state -'

of the design. Specialists are responsible for the flow of
control during design problem-solving. The selection and
execution of plans provide these control decisions.

In contrast, tasks supervise the design activity
carried out by steps. A task makes no control decisions
that affect the overall problem-solving flow and always
attempts to carry out the same series of actions. The main
role of the task in the system is an organizational one --
that of grouping some related steps and executing them in
order.

2.1 Plan Action

A plan is the result of past planning by a human designer.

It is the result of prior decisions about the flow of
control in a portion of the design for a given situation. A
plan could, for an -auto example, specify that the engine
should be designeLd first, followed by the suspension and
then the body, with each possibly being preceded by a rough
design.

A plan is executed by testing its applicability
conditions and then executing each plan item in turn. A
plan item can be a task, the testing of some constraint, a -

design or rough-design request of a specialist, or an
indication that some specialists should be used in parallel.

By selecting a plan the specialist is refining the plan
that calls it. The specialists in the hierarchy act
together as if they were gradually "inserting" plans into
other plans in order to "construct" the plan that will

Sp.
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produce a successful design. Figure 1 demonstrates this and
shows the plan that has been selected by specialist SO being

refined by specialists S1, and S2, while S3 refines the plan
in S2. The Ti are tasks.

<SI TI S2 >/ \ / \
/ \/\

T2 ; T3 > < S3 ; T4>/ \

< TS ; T6>

Figure 1: Plan Refinement

3 PLAN SELECTION

Plan selection depends on three types of information: the
qualities of the plans themselves, the requirements from the
user and the design and its history). We propose a general
method of plan of selection that responds to all factors.

A designer may have very simple selection criteria,
such as "if there is a plan that hasn't been tried yet then
try it", or they may be very complex. For example, "if
there are some plans that look perfect for the situation
then if plan X is amongst them then use it, otherwise pick
the one that has been the most reliable in the past, unless
it contains the item that failed in the last plan". In
general, complex analysis of prior failures may precede a
plan selection, but at present we do not have enough

,*- understanding of these processes to be certain that we have
provided the language necessary to express them.

The selection process will select one plan from
several. Some plans will not be suitable for consideration.
Others will, but with various degrees of suitability.
Selection then will occur after the individual plans
available in the specialist have been evaluated for
suitability. Consequently, we will divide the whole
selection process into evaluation and selection processes,
each with its own knowledge. It may be that the processes
of evaluation and selection are intermixed. For this to
occur there would have to be knowledge in the form of
"suggestions" about which evaluations to do before others.
We have currently made the simplifying assumption that all

plan evaluations are made prior to selection.

'pt
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First we will discuss the process of selection and then
the knowledge that can be used during plan selection. An
example of the system doing plan selection can be found in
Appendix A and the reader is urged to follow that example to
obtain a better understanding of the problem-solving
involved. A more detailed explanation of DSPL can be found
in [BRoW85].

3.1 The Selection Process

Selector
, / \

/\
/\

Sponsor Sponsor Sponsor,-I I I
PLAN1 PLAN2 PLAN3

Figure 2: Plan Selection

-o

Plan selection divides into two parts -- first the
recommendation of those plans that are candidates for use,
and second the selection of a plan from the set of
candidates. Each plan has associated with it a Sponsor and
some information about the qualities of the plan. It is the
job of the plan's sponsor to use its current situation, the
qualities of the plan, the user's preferences about
qualities, and special case information to make an
evaluation of whether its plan is a suitable candidate for
selection. It will give an estimation of the plan's
suitability. The Selector has the job of collecting the

* responses from the sponsors, promoting or relegating if
necessary, and selecting one plan for use.

Sponsors will respond with some scale of suitabilities
such as (Perfect, Suitable, Don't-know, Not-suitable,
Rule-out). Those ruled out will never get used, unless the

* knowledge encoded in the Selector gives strong reasons to do
so. If more than one plan is Perfect then the selector will
pick one. If none are Perfect, then a Suitable plan might
be used. The Selector can, depending on its stored
knowledge, do plan suitability relaxation in order to select
from amongst the lower rated plans.

In many situations, there will be few plans, or the
suitabilities will always be the same, and, consequently, U
this kind of effort during plan selection is not always

........................................
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warranted. In these cases the order can be fixed. In the
AIR-CYL implementation, plans are selected in the order the
designer prefers.

3.1.1 Sponsors - Figure 3 shows the DSPL for an example of
a Sponsor.

(SPONSOR
(NAME Sponsorl)
(USED-BY ExampleSelector)

. (PLAN Planl)
(COMMENT "Sponsor returns suitability")
(BODY
COMMENT "rule out plan if already tried"
REPLY (IF (ALREADY-TRIED? PLAN) THEN RULE-OUT)
COMMENT "rule out plan if plan Plan3 failed"
REPLY (IF (ALREADY-TRIED? "Plan3) THEN RULE-OUT)
COMMENT "use qualities to get suitability"
Qualities
(TABLE (DEPENDING-ON

(RELIABILITY-REQS)(COST-REQS))
(MATCH
(IF (Reliable Cheap)THEN PERFECT)
(IF (Medium ? )THEN SUITABLE))
(OTHERWISE RULE-OUT))

COMMENT "was Task2 the last failure?"
Agent (EQUAL "Task2 LAST-FAILING-ITEM)
COMMENT "now use vbls to get suitability"
REPLY
(TABLE (DEPENDING-ON

Agent Qualities)
(MATCH
(IF ( T ? )THEN RULE-OUT)
(IF ( ? PERFECT )THEN PERFECT)
(IF ( ? SUITABLE )THEN SUITABLE))
(OTHERWISE DONT-KNOW))

Figure 3: Sponsor "Sponsori"

Each sponsor will be associated with only one plan as
it will have knowledge about the applicability of that plan
to different situations. Every plan has a sponsor. The
output of a sponsor is a classification, i.e., one of the
categories from the scale of suitabilities. The inputs to a
sponsor are the various sources of knowledge already
outlined above. Notice though that some knowledge, for
example plan complexity, will belong only in the selector,
as it will be used to choose between equally suitable plans.

*.
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In a sponsor, evidence needs to be accumulated about U
the plan's suitability for use. Some information can be
used to determine the suitability of a plan quite quickly,
while other pieces of information need to be put together to
build a picture of suitability. Consequently, two kinds of
expressions of knowledge are needed: one with immediate
result and one that accumulates a result.

The immediate form of knowledge is a rule -- for
example "if this plan has already been executed during this
use of the specialist then it must have failed and should
not be considered at this point"; that is, its
suitability is "Rule-out". The accumulated form of
knowledge will weigh the answers to several "questions",
such as "is a COST-Cheap required?", and combine them to
produce a suitability value according to some
designer-dependent logic. This is not meant to imply that
predicate calculus is used, but rather that under some
circumstances the designer will make "suitable" AND
"perfect" produce "perfect", while in others it will produce
"suitable".

As there are several different types of knowledge we
will propose that evidence is accumulated for each type,
e.g., qualities, and then these pieces of evidence are
combined to form an overall suitability to represent the
plan. This approach has already been demonstrated in the
CSRL language [BYLA83] where diagnostic knowledge is
factored into knowledge groups.

3.1.2 The Selector - Figure 4 shows the DSPL for an example
of a Selector.

(SELECTOR
(NAME ExampleSelector)
(USED-BY Example)
(TYPE Design)
(USES Sponsorl Sponsor2 Sponsor3)
(COMMENT "Selectot.reurns name of plan")
(BODY

COMMENT "if Plan2 is perfect use it"
REPLY (IF (MEMBER 'Plan2 PERFECT-PLANS)

THEN "Plan2 )
COMMENT "if there are perfect plans

use them in preferred order"
REPLY (IF PERFECT-PLANS

rHEN (DESIGNER-PREFERENCE
PERFECT-PLANS)

ELSE NO-PLANS-APPLICABLE) U

))U

* - €
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Figure 4: Selector "ExampleSelector"
IX

Each selector will be associated with a specialist and
will have a collection of subordinate sponsors. A selector
contains specialist dependent knowledge. The input to a
selector is the collected outputs from all of the sponsors
that report to it, and the state and history of the design.
A sponsor's output consists of the name of its plan and a
suitability. So, for example, the information received
might be:

(planl, perfect) (plan2, suitable) }.
The output from the selector consists of either the name of
the plan selected for execution by the specialist, a failure
due to there being no plans appropriate, or a failure due to

Vall plans having been tried already.

The exact operation of a selector will depend on the
personal preferences and experiences of the designer whose

2 knowledge we are trying to capture. The "normal" knowledge
would take the plans ranked as "perfect" and choose one. If
there are no perfect plans then "suitable" ones will be
considered, and so on. Exactly how many of the suitability
categories will be considered as acceptable can be made to
depend on any appropriate factor: for example, on the
position of the specialist in the design hierarchy. A
specialist at the lowest extremes can afford to try plans
that are less appropriate, as not much effort is being
wasted if they fail (i.e., there aren't many agents below).
However, at higher levels there are many specialists below
and any relaxation of standards could be very costly.

* If several plans appear to equally suitable the
designer is most likely to pick the one that has performed
the best in the past. That is, the designer has an order of

* preference. Another approach is to compare some quality
(for example COST) and pick those with the best value
(COST-Cheap). This can be repeated with other qualities
(such as WEIGHT-Light) until one plan remains. Notice that
there is qo need to prescribe a global ordering for
qualities using this method, as orderings will be local to

* specialists and s.nsitive to the situation.

*" Knowledge that can be used daring selection includes
plan complexity, existing preference, position in the

* * hierarchy, special rules about the use of particular plans
(e.g., "if plan A is perfect and it hasn't been used before
then use it before any others"), dependencies between
attributes of the design, and knowledge about past plan

.*~:failures.

"p
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3.1.3 Additional Strategies - One option available to a
designer during plan selection is Plan Reordering. If there
is evidence to suggest that the first part of the plan will
succeed, but some subsequent item may fail, then less effort
would be wasted if that dubious plan item could be executed
earlier. Another technique is to not immediately discard
the partial design achieved by the successful part of the
last failing plan. By reasoning about the dependency
relations carefully it is possible to selectively discard or
keep parts of the design done by the previous plan so that
that work need not be repeated.

3.1.4 Plan Selection In AIR-CYL - It may be that plan
selection really isn't that much of a problem as it
immediately appears. Due to the decomposition into
specialist. If there are few plans to choose from then
selection mnot be very cof there are few plans to choose
from then selection may not be very complex.

Suppose that there are two plans in every specialist in
a fully specified AIR-CYL system. Given the current
specialist hierarchy, there would be about 130 different
sequences of plans that can be followed in order to achieve
the design. A very large number of actual designs can arise
depending on the actual values chosen. So even with a small
hierarchy and a small number of plans at each point there
are still a very large number of designs captured. The
human designer will gradually form preferences and may
actually do very little work during plan selection.

3.2 Qualities Of Plans

It is not possible to prescribe in advance exactly which
pieces of knowledge will be used in which cases. We are
arguing that these types of knowledge exist, that an Expert
System builder should be provided with language in which to
express them, and that-this knowledge must all be available
to be used by. the plan selection mechanism. The theory
acknowledges that there are these types of knowledge but
does not and cannot describe exactly how each will be used, -z
as it will vary depending on the domain and specialist
involved.

Plans can have qualities associated with them. These
qualities can refer to some attribute of the plan, some
attribute of the design, or some attribute of the object
being designed. A similar set of qualities were used by
Friedland [FRIE79] in his version of the MOLGEN system.

.r .... * ' . ' . ,..- ** ~ .. ..... . .---. . . .
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* Precision: A plan with precise measurements is more
expensive in manufacturing terms, and may be harder to
design as there is less "slack" in the plan.

* Convenience: Convenient plans will have easier

calculations, less difficulty with tolerances, fewer
elements, fewer other specialists used, and less
anticipated trouble.

Reliability of design: Some plans will be associated
with reliable products as they capture methods that
produce reliability.

Reliability of plan: A designer will know the
0likelihood of success for a plan. This will have a

general component, (i.e., works fairly often), and a
context dependent component, (i.e., fails often if
Aluminium is the material). A plan that works often
will be considered reliable.

* Cost: An expensive plan produces an expensive product.

* Designers time: If the plan takes a long time to
follow due to many calculations, many steps, many
questions of the user, or many catalogue lookups it will
be noted as taking a lot of the designer's time.

Manufacturer's time: A note is made if a plan takes a
j lot of the manufacturer's time.

* Plan Complexity measures:

- Length of Plan: If all else is equal then the
designer can be expected to choose the shortest
plan.

- Complexity from Structure: Assuming that it is
preferable to select a plan that is in some way

. "simpler" than another, a "cheap" estimate of
complexity is useful. It is possible to obtain some
crude measure of the complexity of a plan by using
just its. surface syntax -- i.e., without detailed
knowledge of the structure or action of the
components of that plan.

-- Complexity from Dependencies: Another measure

takes into account the designer's knowledge of
agent-agent dependencies. Suppose specialist Si has
a dependency measure of 5 (i.e., five attributes
depend on it), S2 has a measure of 3, task Ti has 2
and T2 has 1. Consider two plans, < S1 ; T1 > and <
$2 ; T2 >. The first plan, using a simple sum, has
a measure of 7, while the second has a measure of 4.
Thus the first plan has more ramifications if
adopted, and might therefore be worth avoiding.

'a]
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This, and surface complexity, are presented in more
detail below.

Manufacturability: If the processes involved require

much skill, unusual machines, special techniques,
special materials, and unusual attention to detail then

the plan would be classified as difficult to

manufacture.

* Weight: If the manufactured product falls toward the

high end of the range of reasonable weights the plan
would be classified as heavy.

3.3 Situation Factors

In addition to plan qualities, selection depends on the .
situation at the time of selection. Information that may be .

relevant includes :-

1. Plan selection information from above or below.

2. Which plans were selected already by this specialist and

how they failed.

3. The current state of the design (i.e., values chosen).

A specialist can select a plan according to some
preferred quality. In this situation it is good to have
specialists below select plans. that are in some way
compatible -- there is little point selecting a

COST-expensive plan inside a COST-cheap plan. A specialist
in a plan may be passed information on activation to allow
this strategy. There may also be more subtle plan
interactions, where from experience it has been discovered
that while in plan x selection of plan y is to be preferred. '

The history .of the selection process is important for

subsequent selections. Oue does not wish to select the same
plan again, or one that is similar to others that have
failed. The structure and properties of plans that failed
should be abstracted out and used to indicate which others
to avoid.

The way plans failed is also of use. Not only can
there be knowledge such as "If plan A failed then so will
plan B", but also more subtle knowledge such as "If plan A

failed due to task 1 then plan B will fail", or even "If .
plan A failed due to xyz being too large then plan B will

fail". Knowledge can also be in a positive form so that

failure of a plan suggests the selection of another. All of

aS
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this needs a representation of reasons for a plan's failure
to be associated with the plan. The plan item that caused
the failure and an abstracted form of its reasons for
failure should be available.

Plan selection may also depend on the past choice of
values. For example, "If xyz < 0.5 then use plan B". As
small variations in the component can be introduced by
different tasks, selection can depend on this too -- "If
cross section of connecting rod is rectangular then try plan
A otherwise try plan B". These kinds of selection rules
could actually be expressed as constraints in the plan, so
that the use of a plan would be accepted or rejected on
entry. However, after continued use this knowledge would
migrate so that it could be used during the selection
process.

3.4 Plan Complexity

The complexity of a plan can be known and associated with
the plan. It can be accessed and used during plan
selection.

3.4.1 Plan Complexity From Structure - The components of a
plan are tasks, constraints, or specialists. If we take the
constraint as the major cause of problems in the system,
then we can assign a rough complexity to each type of agent
depending on how many constraints we expect to find in each
on average. Assume that on average failures will occur in
the middle of a plan. This means that items towards the
beginning of the plan will on average be more often involved
in failure handling and redesign. If we use
position-in-plan as weights then some rough measure of the
influence of position in the plan can be included. This
measure is a surface indication of complexity taking into
account design and redesign. This method also builds in the
length of the pLan -as a factor. Longer plans are more
complex.

3.4.2 Dependency As A Measure Of Plan Complexity - A plan
has a dependency measure. That is, some estimate of the
number of attributes that depend on the attributes for which
this plan decides values. Thus a plan might be worth
avoiding if it has more affect on the design. Just as with
the surface structure measure of complexity we want to
include the possibility of failure and its implications. If
we assume that on average failure occurs in the middle of
the plan then we know that agents towards the beginning of
the plan will tend to be involved in redesign more often. A
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redesign will affect more of the design if the agents used
in redesign have a high dependency measure. As before, vw
can calculate a weighted dependency.

It must be stressed that it is not being suggested that
numerical measures such as these actually exist, but rather
that, with experience, some feeling for the complexity of a
particular plan can be formed based merely on general
knowledge about plans, and that these complexities can be
used and compared. Plan selection can use symbolic
complexity measures as one of the available sources of
knowledge. A designer will probably have "worked out" some
"1value" for the complexity over a period of time and will
use that without regard to how it was originally obtained.

4 SUMMARY

This paper has presented an analysis of plan selection in
design problem-solving. Plan selection is a knowledge-based
process involving two different types of knowledge. A
Sponsor uses its knowledge to estimate a suitability for the
plan it represents given the current situation. A Selector
uses the information from its sponsors and its knowledge to
select the plan to be tried next. Collections of plans,
their sponsors and their selector are associated with a
specialist. Selection takes place in the context of a
particular subproblem in the design. This theory has been -.

included in the DSPL language which is currently under
development. A version of DSPL has been used to implement a
problem-solver to design a small air-cylinder. More
research is needed to identify exactly what kinds of
knowledge are consistently used by designers to select their
plans.

Acknowledgments:
This work was supported at Ohio State University by AFOSR
grant #82-0255. We would also like to acknowledge the
cooperation of the.AccuRay Corporation and Pete Schmitz, and
the assistance of. Dave Herman.

5 APPENDIX A

This is an edited form of a trace generated by an example
written in DSPL. This trace shows a specialist SpA
selecting amongst two plans Pi and P2. Each plan has two
tasks. A constraint in task Ti always fails.

***** AIR-CYL Air-cylinder Design System e,,,*
*** Version date: (Dec 85)

N1 U
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**Todays date: (18 Feb 84)
SUser: DCBROWN

*Standard test/demo requirements to be used
*** Requirements Input Complete

--Entering Specialist
...SpA... Mode - Design

III Note:
The specialist needs a plan.
Ask the sponsors for opinions
about each plan.

-----------Entering Sponsor
...PlSponsor ... Plan - PI

---------Leaving Sponsor

....PlSponsor...Result- SUITABLE

---------Entering Sponsor
... P2Sponsor ... Plan - P2

---------- Leaving Sponsor
.*..P2Sponsor...Result- PERFECT

!I! Note:
The opinion of the sponsors is that
there is a suitable plan and a perfect one.
The selector will pick one.

----------Entering Selector
... SpASelector

--- Leaving Selector
*...SpASelector ... Result- P2

III Note:
The selector's knowledge specifies to
pick P2 if it is perfect and hasnt been tried.

----------Entering Pltan
...P2*. Type -Design

------------ Entering Task ... TI

II! Note:
Plan 2 uses Task 1 which uses
Constraint 1 which has been
fixed to always fail.

-------------- Entering TEST-CONSTRAINTS ... (Cl)

----- Leaving TEST-CONSTRAINTS .... (CI)
..Resulto
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(Meg Mag:MsgType Failure
Msg:MsgSubType Constraint
Msg:Fro.Name C1
Mag:FrouType Constraint
Mag :Neusage "Constraint failure"U
Msg:Explanation "Cl forced failure"
Msg:InPlan P2
Mag:InMode Design

--- Leaving Task.9.TI

(Nag- Msg:MagType Failure ..... )

----Leaving Plan.o..P2
so. Resultan

(Nag Msg:MsgType Failure see**)

III Note:
These agents know nothing about
failure recovery. The task fails and
the plan failure follows. A new plan
must be found. Ask the sponsor..

----Entering Sponsor

,,.PlSponsoro..Plan - PI
----Leaving Sponsor

e....PISponsoroo.Result- PERFECT

--- Entering Sponsor
*,.P2SponsoroooPlan - P2

----Leaving Sponsor
... .P2Sponsor~.o .esult- RULE-OUT

III Note:
Note that both P1 and P2 have changed
their answoes This is possible as the
situation has changed.

----Entering Selector
.SpASelector

----Leaving Selector
.... SpASelector.o.Result- P1

III Note:
The selector picks the perfect plan.

e_-,t e P_,7.m
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------------Entering Plan...Pl ... Type -Design

------------- Entering Task...T3

---------------- Entering TEST-CONSTRAINTS ... (C2)

---------------- Leaving TEST-CONSTRAINTS .... (C2)
... Result- Success Msg

-------------- Leaving Task.***T3

... Result-n Success Hag

-------------- Entering Task... .T1

1!! Note:2 Cl fails again, leading to
plan failure.

---------------- Entering TEST-CONSTRAINTS ... (C1)

---------------- Leaving TEST-CONSTRAINTS....(cl)
..Resultm

(Hag Msg:MsgType Failure ...

-------- Leaving Task..*oTl
.*..Resultm

(Meg Msg:MsgType Failure ...... )

------------------ Leaving Plan .... P3
.Result-

(Msg Msg:HsgType Failure ..... )

11! Note:
Ask the sponsors ag-ain,

------- Entering Sponsor
.*.PlSponsoro*.Plan m P1

------------Leaving Sponsor
*.,.PlSponsoro..Result- RULE-OUT

------------Entering Sponsorcc **.P2Sponsor..*Plan m P2

----------- Leaving Sponsor
*....P2Sponsor...Result- RULE-OUT
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ll! Note:
The selector gives up.

----- Entering Selector
... SpASelector

SLeaving Selector .... SpASelector
... Result- ApplicablePlanNotFound

II!I Note:
With no more plans to try
the specialist will fail.

--- Leaving Specialist .... SpA
.. *.esult-

(Nsg Msg:MsgType Failure ..... )

* *** Design attempt fails
*** Version date: (Dec 85)
*** Todays date: (18 Feb 84)

* *** User: DCBROWN
***** AIR-CYL Air-cylinder Design System *
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